
TYPER: A Type Annotator of Erlang Code

Tobias Lindahl Konstantinos Sagonas
Department of Information Technology

Uppsala University, Sweden
{tobiasl,kostis}@it.uu.se

Abstract
We describe and document the techniques used in TYPER, a
fully automatic type annotator for ERLANG programs based on
constraint-based type inference of success typings (a notion closely
related to principal typings). The inferred typings are fine-grained
and the type system currently includes subtyping and subtype poly-
morphism but not parametric polymorphism. In particular, we de-
scribe and illustrate through examples a type inference algorithm
tailored to ERLANG’s characteristics which is modular, reasonably
fast, and appears to scale well in practice.
Categories and Subject Descriptors F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs—Type struc-
ture; D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Documentation
General Terms Languages, Theory
Keywords constraint-based type inference, success typings, sub-
typing, principal typings, Erlang

1. Introduction
ERLANG programs have been developed for quite some time now
without containing any explicit information about types for their
functions. Types, besides allowing some errors to be caught stat-
ically and early in the development cycle, are useful for software
maintenance since they provide important documentation about
function interfaces and explicitly state programmers’ intentions.

The effects that this lack of documentation has on software
maintenance cannot be underestimated. In the best case, informa-
tion about the intended types of function arguments and their re-
sults exists in the form of comments. However, experience shows
that such documentation is often unreliable since comments tend to
evolve in a different pace than the source and occasionally suffer
for extreme code rot. On the other hand, type information which
implicitly exists in the code itself is more reliable, but often hard to
reconstruct in its entirety for a dynamically typed language such as
ERLANG. Still, trying to do so is a worthwhile goal.

In an attempt to attack this goal, in this paper we describe and
document the techniques used in TYPER, a fully automatic type an-
notator for ERLANG programs. Notable characteristics of TYPER

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Erlang’05 September 25, 2005, Tallinn, Estonia.
Copyright c© 2005 ACM 1-59593-066-3/05/0009. . . $5.00.

are that it is completely automatic, never rejects any programs that
are accepted by the BEAM compiler, is fast, scalable and reason-
ably precise, and performs reasonably even when only part of the
code base is available.

The rest of the paper is structured as follows. In the next sec-
tion we briefly review the basis of our work in order to put it into
context. The next two sections form the main body of this paper
describing TYPER’s design goals and basic usage (Section 3) and
the type inference algorithm on which TYPER relies in Section 4
which forms the core of this paper. Consequences of inferring suc-
cess typings for a language with side-effects such as ERLANG are
discussed in Section 5. A taste of TYPER’s performance appears
in Section 6 and the paper ends by reviewing some closely related
work and with concluding remarks.

2. The Basis of our Work
2.1 The Erlang language and Erlang/OTP
ERLANG [2] is a strict, dynamically typed functional programming
language with support for concurrency, communication, distribu-
tion and fault-tolerance. ERLANG’s primary design goal was to ease
the programming of soft real-time control systems commonly de-
veloped by the telecommunications industry.

ERLANG’s basic data types are atoms, numbers (floats and ar-
bitrary precision integers), and process identifiers; compound data
types are lists and tuples. A notation for structured objects (records
in the ERLANG lingo) is supported, but the underlying implemen-
tation of records is currently the same as that of tuples. To allow ef-
ficient implementation of telecommunication protocols, ERLANG
nowadays also includes a binary data type (a vector of byte-sized
data) and a notation to perform pattern matching on binaries. Func-
tions are defined as ordered sets of guarded clauses, and clause
selection is done by pattern matching. Explicit pattern matching
against terms and clause guards, whenever present, provides infor-
mation about a function’s intended input and return types.

The default compiler of Erlang/OTP, nowadays based on the
BEAM virtual machine, is a fast compiler which takes as input a
single source file (file.erl) and produces a file.beam bytecode
file as output. Relatively few checks for erroneous code are per-
formed in the process: till recently, even obviously type-incorrect
code (e.g. adding an atom to a number) was happily accepted as
input. The situation is slowly changing, but the programs that are
currently accepted by the BEAM compiler are far from being type
correct and the compiler does not perform any sophisticated opti-
mizations guided by a type analysis phase.

2.2 Dialyzer
The limited checking in that the BEAM compiler performs leaves
a void in the toolkit that an ERLANG programmer can use to de-
velop reliable code. Testing alone, no matter how thorough, cannot
reveal all software bugs. In order to, at least partly, fill this void

we have developed Dialyzer, a software tool that uses lightweight
static analysis to detect discrepancies (i.e., software defects such as
exception-raising code or hidden failures) in ERLANG code. Dia-
lyzer has successfully been applied in real-world telecom projects
with code bases ranging up to more than a million lines of code,
where it has detected a significant number of discrepancies that
have gone undetected during years of extensive testing. A descrip-
tion of Dialyzer and our experiences can be found in [5].

The ongoing development of Dialyzer has inspired new ideas
and created new possibilities for exploiting type inference. Dialyzer
can analyze large ERLANG code bases relatively fast, reconstruct
type information available in them, identify obvious type clashes in
them, and report them to the programmer. It should thus be possible
to also derive similar type information not for defect detection but
for automatic documentation purposes: to enhance a programmer’s
understanding of what some piece of code really does and help
them to maintain legacy code. To achieve this goal, we thus decided
to develop a new tool, called TYPER, whose functionality and type
inference technology we describe below. But we note that the type
inference that TYPER is using is not the same as that has been used
so far by Dialyzer.

3. TYPER: A High-level Overview
3.1 Properties
Before embarking on this project, we set the following goals:
• TYPER should take ERLANG code as-is and should never reject

any programs, no matter how many “obvious” type errors they
may have. In short, TYPER should not act as a type checker.

• TYPER should be fully automatic, meaning that no type dec-
larations or user annotations of interfaces need be supplied for
TYPER’s use.

• TYPER should perform reasonably even when not all code
or module interfaces are available. Of course, if TYPER gets
access to all code, the precision of its type annotations usually
improves.

• TYPER should never be wrong. Its type annotations should be
conservative over-approximations. For example, the type anno-
tations for a function’s arguments are possibly more general
than the types that a function will terminate and thus return val-
ues for.

• TYPER should be fast and scalable.
• The type annotations produced by TYPER should be as precise

as possible, but never more than that.

3.2 Basic usage
Currently, TYPER comes with only a command line interface. The
basic usage is:

> typer my module.erl

which will read the file and create a new file called my module.ann,
located in the same directory as the original file, that contains the
type signatures for all functions in my module.erl. If the user
wishes to see the annotations directly instead of reading the file,
the output can be redirected to standard out by giving the -stdout
option. If include paths and macro definitions are needed, these can
be included by specifying appropriate -I and -D options.

In the presence of complicated build scripts it can be convenient
to produce the annotations from abstract code. Abstract code is
produced by the BEAM compiler by giving it the compiler option
+debug info, and it resides in the .beam file. The command for
producing annotations from abstract code is:

> typer --byte my module.beam

tag 1(N) when is atom(N) -> {’atom’, N};
tag 1(N) when is float(N) -> {’float’, N};
tag 1(N) when is integer(N) -> {’int’, N}.

(a) Function tagging a subset of atomic types

tag 2(N) when is atom(N) -> {’atom’, N};
tag 2(N) when is float(N) -> {’float’, N};
tag 2(N) when is integer(N) -> {’int’, N};
tag 2() -> ’not valid’.

(b) Function that succeeds for all inputs

Figure 1. Illustrating the need for subtyping and the type any().

The most common command-line options of TYPER are listed in
the appendix.

4. TYPER: The Implementation
Even though ERLANG is a dynamically typed language, most func-
tions are typically intended to work on arguments of some input
types and return a result of some other type. This information can
be either explicitly expressed by the programmer by using pattern
matching, data constructors and guard-tests, or it can only be im-
plicitly available through the use of built-in functions. For example,
if two variables are used as the arguments to the built-in addition
operator, then they are both constrained to be numbers or the call
would fail.

Such implicit type information can be reconstructed by a type
inferencer, and indeed this is the basis of the approach taken by both
Dialyzer and TYPER. On the other hand, there are some aspects of
TYPER’s type system that require further explanation.

4.1 The need for subtyping
As mentioned, all valid (i.e., accepted by the BEAM compiler)
ERLANG programs should be handled by TYPER and the anno-
tations produced should be reasonable. Among other things, this
means that the type system needs to be able to handle subtyping and
include the universal type of all ERLANG terms, denoted any().
Why this is so, is easily shown with an example.

Consider the ERLANG function in Figure 1(a). Since the func-
tion accepts an atom, integer or a float in each of its clauses we
need to represent the union type (atom() | integer() | float())
(for convenience also abbreviated as (atom() | number())).

In Figure 1(b) the function has been modified to tag atoms or
numbers with their proper tag and return the ’not valid’ atom
for any input argument whose type is not of an atom of number.
Since there are no constraints for its input argument, this function
will succeed when called with any term, i.e., its input argument has
as type the universal type any().

4.2 The basic types of the type system
The type system used by TYPER, shown in Figure 2, includes the
basic types of the ERLANG language such as atoms, integers, floats,
identifiers used for interprocess communication (pids, ports and
references), and binaries (a finite sequence of bits). Structured types
are tuples of any non-negative integer arity. This currently includes
all user-defined records (tuples whose first argument is tagged by
an atom). The other structured data type of ERLANG, namely lists,
is given a special treatment since lists are very commonly used in
ERLANG code. Their type comes in various forms (see Figure 2)
depending on how much information can be inferred about their
structure (i.e., whether they are empty or not, nil-terminated or not,
etc). Also note that lists are the only recursive data type of the
type system in the sense that list(T) is really a shorthand for the
recursive type ([] | [T |list(T)]).

T ::= A | I | float()| C | binary() | S | L | F | (T1 | T2) | any() | none()
A ::= ’’ | ’a’ | ’b’ | . . . | ’aa’ | . . . | ’ok’ | ’true’ | ’false’ | . . . | atom()
I ::= . . . | -2 | -1 | 0 | 1 | 2 | . . . | byte() | char() | integer()
C ::= pid() | port() | ref()
S ::= {T1, . . . , Tn}, n ≥ 0 | tuple()
L ::= [] | list(T) | nonempty list(T) | possibly improper list(T) | nonempty possibly improper list(T)
F ::= (T1, . . . , Tn) → T, n ≥ 0 | (. . .) → T

Figure 2. The type annotation language.

tuple()

any()

none()

possibly_improper_list(T)

nonempty_list(T)

{} {T}list(T)ne_p_improper_list(T)() −> T

number()

float() integer()

char()

byte()

0−1

port() pid() ref() (...) −> T

bool()

atom()

’ok’’false’

(T) −> T1

1

binary()

[]

1

’true’’aa’

Figure 3. The lattice of type values.

The type system also includes funs, i.e., functions with either a
known or unknown number of input arguments. If the number of
arguments, n ≥ 0, is known then the input arguments are denoted
as (T1, . . . , Tn) where T1, . . . , Tn denote their respective types. If
the number of arguments is unknown but it is known that the fun’s
return type is T , then the fun is denoted by (. . .) → T . Note that T
can also be any().

In general, the same idea is used for all other types. Whenever
possible, the type system maintains detailed information about the
specific type of some argument position or return value. For exam-
ple, the analysis might infer that a function’s argument can be the
integer -1 or the integer 42, denoted as (-1 | 42) and this is what
the type union operation (T1 | T2) is used for. If such detailed infor-
mation is either not available or reaches a certain threshold which
could cause the analysis to explode, the information is collapsed to
a more general type. For example, in this case we could collapse
(-1 | 42) to the type integer(). A possible future extension to the
widening of integers is to maintain ranges of the form -1..42.

As can be seen in Figure 3, the most general type is the type
any(). The type none() denotes that the type analysis has deter-
mined that there is no type possible for this argument position or
return value, which typically denotes the presence of a type error.
For example, the return value of the following function has type
none().

weird() -> ’gazonk’ + 42.

Finally, some types are so commonly used, that we create spe-
cial type aliases for them, shown in Table 1. These aliases are typ-
ically used for producing a prettier representation of TYPER’s out-
put.

4.3 Success typings and their relation to principal typings
We define the basis of the inferred type signatures in terms of
success typings, i.e., types that in principle could be accepted
by a function and would return a result. Success typings share
a lot of properties in common with principal typings [4]. Chief

Shorthand Type Alias for
any()

bool() (’true’ | ’false’)
number() (integer() | float())
identifier() (pid() | port() | ref())
[T] list(T)
[T . . .] nonempty list(T)
list() list(any())
function() (. . .) → any()
string() list(char())
nonempty string() nonempty list(char())

Table 1. Common type aliases.

among them is that their type inference is compositional (i.e., each
program fragment’s analysis result does not depend on its lexi-
cal context) and can be done on a modular (i.e., component-by-
component) basis which in turn allows for separate type inference
and compilation.

For example, when inferring success typings, the type signature
for the function in Figure 1(a) is:

tag 1/1 :: (atom() | number()) → {’atom’, atom()}
| {’float’, f loat()}
| {’int’, integer()}

which in words means that its input argument must be a subtype of
(number() | atom()) in order for the function to return a pair (i.e.,
two tuple) whose first element is the atom ’atom’ and its second
element is an atom, or its first element is the atom ’float’ and
the second is a float, or its first element is the atom ’int’ and the
second is an integer. Note that the type system we employ loses the
information that the input argument and the second element of the
returned pair is the same constant.

Similarly, for the function in Figure 1(b), nothing can be said
about its input argument. The input argument is collapsed to the

type any() and its type signature is:

tag 2/1 :: (any()) → {’atom’, atom()}
| {’float’, f loat()}
| {’int’, integer()}
| ’not valid’

We will henceforth denote the type any() with an underscore (its
shorthand from Table 1) in deeply nested type arguments.

4.4 Inferring type annotations
We use a type inference algorithm where types of all variables are
represented using constraints.

4.4.1 Definitions
The type of an expression, e, is denoted with τe. The constraints are
expressed with the subtyping relation (denoted with ⊆) and with
equality constraints (denoted with =), which is really a bidirec-
tional subtyping relation (τe1

⊆ τe2
∧ τe2

⊆ τe1
).

A conjunction of constraints is denoted C1 ∧ . . . ∧ Cn and a
disjunction is denoted C1 ∨ . . . ∨ Cn. Recall that a conjunction of
constraints is a set of constraints where each constraint must hold
for the constraint to be satisfiable, and a disjunction of constraints is
a set of constraints where at least one of the constraints must hold.
Typically conjuncts are generated for straight-line code (i.e., code
containing matching statements or function calls), and disjunctions
are generated by choices in the code (e.g., when a function has
multiple clauses as in the code of Figure 1(a) or when some of its
clauses contain branching statements: case, if or receive as in
the code of Figure 4(a)). The disjunctions and conjunctions can of
course be deeply nested, generated for example from nested case
statements.

4.4.2 Constraint generation
We will not give a formal definition of the constraint generation, but
to give an intuition we will describe some of the basic expressions.

A call to a function with known signature constraints the call
site arguments to be subtypes of the arguments of the signature and
the destination is a subtype of the signature range. For example,
the built-in function length/1, which given a proper (i.e., nil-
terminated) list as argument computes its length, has the signature:

length/1 :: (list()) → integer()

Thus, the expression

N = length(L)

yields the type constraints
τN ⊆ integer() ∧ τL ⊆ list()

ERLANG has a number of built-in functions (BIFs). These in-
clude both basic functions such as arithmetic operations, but also
commonly used functions such as certain list-manipulating func-
tions (e.g., length/1, append/2, etc). These BIFs are typically
implemented in C for efficiency, so their type signatures cannot
be derived using type inference. Instead, their type signatures are
hard-coded in TYPER. For some BIFs we can do better than simply
apply their most general type signature. We have good knowledge
about how for example the arithmetic operations behave. Consider
addition, +/2. The most general typing of this function is

+/2 :: (number(), number()) → number()

but we also know that adding two integers will yield a new inte-
ger, but if at least one operand is a float the result will also be a
float. Furthermore, since the type system accommodates enumer-
ated types for integers, such as the integer 1, we would also expect

the type inference to find that adding, for example, the integers 1
and 2 yields the integer 3. The constraints for the expression

X = Y + Z

are
τX ⊆ number() ∧ τY ⊆ number() ∧ τY ⊆ number()

∧τX ⊆ τY +Z ∧ τY ⊆ τX−Z ∧ τZ ⊆ τX−Y

where the first part assures that the variables are all numbers and
the second part makes use of the specific knowledge of addition.

The general form of a case expression is
case E of

P1 when G1 -> B1;

.

.

.
PN when GN -> BN

end

where E is an expression to be matched against the patterns, Pi are
patterns, Gi are guard expressions, and Bi are clause bodies. This
case expression yields the following constraints:

CE ∧

_

i

τE ⊆ τPi
∧ CGi

∧ CBi
∧ τout ⊆ τBi

!

where Cx are the constraints generated by the expression x and
τout is the type of the whole case expression. Intuitively, the type
of the case expression is the least upper bound of the types of the
clause bodies. Also, in order for the clause body to have a type,
the expression E must be a subtype of the corresponding clause
pattern and the clause guard must be satisfiable. The constraint
generation for case expressions are easily generalized to fit other
expressions containing multiple clauses (e.g., receive statements
and functions with multiple clauses).

4.4.3 Solving the constraints
When solving the constraints we could transform the constraint
into disjunctive normal form, i.e., a disjunction of conjunctions,
C1 ∨ . . .∨Cn where each Ci denotes a conjunction of constraints,
and then solve each conjunction. However, doing so runs the risk
of a possible explosion. To avoid this explosion we have chosen
not to do this transformation, effectively making the analysis path-
insensitive, thereby gaining time at the cost of precision.

Solving conjunctive constraints is more or less straightforward.
A type is the greatest lower bound of its subtype constraints. To
solve a disjunction, all its parts are solved and then the solution is
the least upper bound of the solutions to each disjunctive part.

Consider the function in Figure 4(a). The case expression gen-
erates the constraints:

(τx ⊆ 42 ∧ τout ⊆ ’true’) ∨ (τout ⊆ ’false’)

The solutions to each of the two conjunctions are trivial. Note that
τx is unrestricted in the second conjunct, effectively making its type
any() in this context. To find the solution for the whole disjunction
we take the least upper bound (or supremum) of the types from each
solution and find that

τout ⊆ sup(’true’, ’false’) = bool()
τx ⊆ sup(42, any()) = any()

Therefore, the derived type signature for the function is:
is this the answer 1 :: (any()) → bool()

4.4.4 Unsatisfiable constraints
If two constraints in a conjunction are found to be contradictory,
the whole conjunction is unsatisfiable (i.e., it has no solution)
and all types are considered to be the bottom type none(). If the

is this the answer 1(X) ->
case X of

42 -> ’true’;
-> ’false’

end.
(a) All case clauses are valid.

is this the answer 2(X) when is atom(X) ->
case X of

42 -> ’true’;
-> ’false’

end.
(b) Function where one case clause cannot match.

Figure 4. Functions yielding disjunctive constraints.

fib(0) -> 1;
fib(1) -> 1;
fib(X) -> fib(X - 1) + fib(X - 2).

(a) ERLANG function.

τfib = (0) → 1
∨ τfib = (1) → 1
∨ τfib = (τx) → τfib(τx−1) + τfib(τx−2)

(b) Generated constraints

Figure 5. Vanilla Fibonacci numbers.

constraints represent a clause in the program, we have found that
this clause can never return a value, which of course means that this
clause cannot influence its intended type signature. In other words,
only clauses that succeed determine the type annotation derived for
a function. In the extreme case where all clauses of a function yield
unsatisfiable constraints, this means that the function cannot return
at all.

Consider the function in Figure 4(b). The constraints are:

τx ⊆ atom() ∧

„

(τx ⊆ 42 ∧ τout ⊆ ’true’)
∨ (τout ⊆ ’false’)

«

On the one disjunct, we have the contradiction:
τx ⊆ atom() ∧ τx ⊆ 42

which means that the type signature that is derived for this function
is obtained from the other disjunct and is:

is this the answer 2 :: (atom()) → ’false’

4.4.5 Recursive constraints
Recursive constraints are solved by iteration where the partial re-
sults are inserted in the constraints until a fix-point is reached. In
Figure 5(a) an ERLANG implementation of the Fibonacci function
is shown. For this function, the corresponding type constraints are
shown in Figure 5(b).

When solving these constraints, in the first iteration we find that
τfib has closed forms in the first two disjunctive constraints:

τfib = (0) → 1
∨ τfib = (1) → 1

ff

⇒ τfib = (0 | 1) → 1

Note that intuitively this partial result describes the leaf cases that
at some point must hold in order for the function to return. The
third disjunction has no solution in the first iteration since we do
not have a type signature for τfib yet. In the second iteration the
constraints become:

τx−1 ⊆ (0 | 1)
∧ τx−2 ⊆ (0 | 1)
∧ τx ⊆ (1 | 2 | 3) ⊆ integer()
∧ τfib = (integer()) → 2

Note that we have widened the union (1 | 2 | 3) to integer() for
brevity.1

1 In the actual analysis, the union limit, determining when to apply widening, is bigger,
and also the iteration would pass through the types byte() and char().

fib 2(Zero) when Zero == 0 -> 1;
fib 2(One) when One == 1 -> 1;
fib 2(X) ->

fib 2(trunc(X - 1)) + fib 2(trunc(X - 2)).

Figure 6. Fibonacci function with a twist.

The current type for fib now becomes:

τfib = (integer()) → (1 | 2)

Inserting this once again yields:
τx−1 ⊆ integer()

∧ τx−2 ⊆ integer()
∧ τx ⊆ integer()
∧ τfib = (integer()) → (2 | 3 | 4)

⊆ (integer()) → integer()

and we arrive at a fix-point. The inferred type signature is:

fib/1 :: (integer()) → integer()

This relatively heavyweight approach to inferring that the in-
put argument of the Fibonacci function is of type integer() might
seem a bit extreme to readers familiar with a vanilla Hindley-Milner
type inferencer, but its use is necessary in the presence of subtyp-
ing and in the context of a dynamically typed language such as
ERLANG where the built-in arithmetic operators are overloaded.
Principal typings for input arguments cannot be derived by mak-
ing assumptions which are valid in a Hindley-Milner type system
but not valid in ERLANG. To see why, consider the somewhat un-
orthodox version of the Fibonacci function shown in Figure 6. (The
trunc/1 function,2 truncates floating point numbers to integers
and leaves integers unchanged. Also, in ERLANG, the == guard suc-
ceeds for both integers and floats of a certain (integer) value.)

Clearly, the Fibonacci-with-a-twist can be called either with a
non-negative integer or float and still return an answer. Writing and
solving the type constraints for this function is left as an exercise
for the reader, but the inferred type signature is:

fib 2/1 :: (number()) → integer()

Note that this function is indeed allowed in ERLANG but it would
be rejected by the type system of e.g., Standard ML.

4.5 Benefiting from the module system
It is common that ERLANG functions are organized in modules with
a specified interface, declared with an -export() statement. Non-
exported, called internal or module-local, functions are protected
against arbitrary calls from other modules. This means that for
module-local functions we can employ a closed world assumption
about their intended uses and exploit information about their calling
contexts to derive better typings for them.

Consider the module shown in Figure 7 where the only exported
function is main/1 and function tag/1 is module-local. By using
the constraint-based type inference described in the previous sec-

2 trunc/1 is equivalent to what some other program languages like C call floor().

-module(m1).
-export([main/1]).

main(N) when is integer(N) ->
tag(N+42).

tag(N) -> {’tag’, N}.

Figure 7. All local function calls have statically known types.

-module(m2).
-export([main/1]).

main(N) when is integer(N) ->
{tag(N+42), fun tag/1}.

tag(N) -> {’tag’, N}.

Figure 8. Module where a local function escapes as a closure.

tion we can determine the following success typings for these func-
tions:

main/1 :: (integer()) → {’tag’, any()}
tag/1 :: (any()) → {’tag’, any()}

Now, note that there is only one call to tag/1. By applying a
forward data-flow analysis to this module, we can easily find that
the input argument to tag/1 has the type integer() at the call site.
This information is then propagated to the callee and we derived
the following typings:

main/1 :: (integer()) → {’tag’, integer()}
tag/1 :: (integer()) → {’tag’, integer()}

which arguably describe in a more accurate way the intended use
of these functions. While ERLANG programmers are aware of the
types of the language, and also use them in guards and pattern
matching to choose between function and case clauses, they typi-
cally make full use of the freedom that dynamic typing gives them.
It is common practice to have ’catch all’-clauses such as the last
clause in Figure 1(b). This makes the forward propagation and type
specialization valuable complements to the basic inference of suc-
cess typings.

On the other hand, in a higher-order language such as ERLANG,
propagating type information from the call sites can take place
only when it is known that all call sites are known. To see this,
consider the module in Figure 8. At a first glance, one might
naı̈vely be tempted to infer the same type for tag/1 as in the
previous example, but in this case there is one crucial difference.
Even though tag/1 is still a module-local function, we do not
have knowledge of all its call sites. The function escapes the scope
of this module since it is exposed to other modules as a higher
order function fun tag/1 used as a return value from the exported
function main/1. Since the function escapes the module scope,
there might be a call site that we do not know about. Thus we have
to treat the function as if it were exported, i.e., we cannot specialize
its typing. The inferred typings for functions in this module are:

main/1 :: (integer()) → {{’tag’, }, (any()) → {’tag’, }}
tag/1 :: (any()) → {’tag’, any()}

Note that the any() types in the type signature of tag/1 above,
are not type variables. The type system which TYPER currently
employs, only supports subtyping, not parametric polymorphism.

4.6 Handling remote calls
The type inference which TYPER employs is modular. Functions
are analyzed by taking their (mutual) dependencies into account.
Once a function has been analyzed, the resulting type signature
is put into a lookup table. Whenever a call to this function is
encountered, we can use the current value in the lookup table. By
ordering the analysis based on a reverse topological sort of the
strongly connected components (SCCs) of the function call graph,
we can ensure that all information about the functions that a SCC
depends on already has been gathered.

But, what if the called function is not available? In the require-
ments of Section 3.1 we mentioned that TYPER must do something
reasonable if not all the code is available. The solution is both sim-
ple and safe: a call to an unknown function does not constrain any
of the arguments nor the return type. This would be problematic if
we were trying to type check the program, but since we are merely
trying to gather all available type information, we can fall back on
the type signature (any(), . . . , any()) → any() for any unknown
functions.

If previously missing information about functions becomes
available, e.g., by including more modules in the analysis, we will
possibly get new constraints for the call site. Since this can only
make the information more precise, it is easy to see that the pre-
viously derived type must be an over-approximation, which is of
course sub-optimal but safe.

ERLANG comes with an extensively used standard library.
When TYPER is used for the first time, the current version of the
stdlib is analyzed and the information is put into a persistent
lookup table that is thereafter used as the starting point of conse-
quent analyses.

4.7 Putting it all together
The basic type annotation algorithm that TYPER employs is as
follows:

1. Construct the call graph for the functions and sort it topologi-
cally based on the dependencies between its strongly connected
components (SCCs).

2. Analyze the SCCs in a bottom-up fashion using the constraint-
based type inference to find their most general success typings
under the current constraints.

3. Analyze the SCCs in a top-down order using the data-flow
analysis to propagate information from the call sites to module-
local functions.

4. Add new constraints for the type inference, based on the prop-
agated information from step 3.

5. If a fix-point has been reached, annotate the program with the
derived type signatures, otherwise repeat from step 2.

4.8 A slightly bigger example
Consider the module list util shown in Figure 9(a), containing
some well-known functions for list manipulation. We will describe
how we infer type annotations for functions of this module.

In Figure 9(b) the function call graph for this module is shown.
Apparently, each strongly connected component consists of a sin-
gle function, and we also see that function reverse/2 has to be
analyzed first since it does not depend on any other functions but
itself. Performing the type inference we get the following success
typings (in the order with which the functions are analyzed):

reverse/2 :: (list(), any()) → any()
reverse/1 :: (list()) → any()

map/3 :: (any(), list(), list()) → any()
map/2 :: (any(), list()) → any()

-module(list util).
-export([reverse/1, map/2]).

reverse(L) -> reverse(L, []).

reverse([H|T], Acc) -> reverse(T, [H|Acc]);
reverse([], Acc) -> Acc.

map(F, L) -> map(F, L, []).

map(F, [H|T], Acc) -> map(F, L, [F(H)|Acc]);
map(, [], Acc) -> reverse(Acc, []).

(a) Original ERLANG module.

reverse/1

reverse/2

map/2

map/3

(b) Function call graph

map(F, [H|T], Acc) -> map(F, L, [F(H)|Acc]);
map(F, [], Acc) when is function(F,1) ->

reverse(Acc, []).
(c) Adding a guard to map/3.

Figure 9. Some list manipulations.

These signatures are correct, but they are arguably not showing the
intention of the programmer. By applying the data-flow analysis
for module-local functions outlined in Section 4.5, we find that the
second argument in calls to reverse/2 can only be list(), and that
yields the typings shown below:

reverse/2 :: (list(), list()) → list()
reverse/1 :: (list()) → list()

map/3 :: (any(), list(), list()) → list()
map/2 :: (any(), list()) → list()

For this example, this is as far as we can get. Although intuition
tells us that map/2 should always be called with a higher order
function in its first argument, this is not reflected in the type signa-
ture of the function. However, if we closely look at its code, we can
convince ourselves that a call in another module

L = list util:map(3.14, [])

would happily return the empty list. In the presence of arbitrary
subtyping, this is not a type error.

4.9 Using type inference for documenting function interfaces
Such over-approximations in the interfaces of functions like that
of map/2 often signal an alarm. When the authors of the mod-
ule examine the automatically derived type signature, they might
consider changing map/2 to the function in Figure 9(c), using the
new is function/2 guard BIF which is available starting with
Erlang/OTP R11. The programmer thus can, with minimal cost,
thereby ensure that the first argument is indeed a higher order func-
tion of arity 1. Doing so, would change the inferred type signatures
to:

map/3 :: ((any()) → any(), list(), list()) → list()
map/2 :: ((any()) → any(), list()) → list()

This change would of course make the map/2 call with 3.14 as
the first argument now fail, but this is arguably either an erroneous
call or possibly an extremely obfuscated way of checking that the
second argument of map/2 is the empty list.

In other words, the annotations produced by TYPER not only
can be used for automatic documentation and program under-
standing, but also signal places where the code does not neces-
sarily reflect the programmers’ intentions. The following example3

shows how reasoning about automatically derived, slightly counter-
intuitive, type annotations for commonly used functions can often
reveal subtle errors and unintended behavior of functions which
have survived over a long period of time.

In stdlib, the implementation of lists:suffix/2 is as fol-
lows:

suffix(Suffix, Suffix) -> true;
suffix(Suffix, [|Tail]) ->

suffix(Suffix, Tail);
suffix(, []) -> false.

for which TYPER derives the following type signature:
suffix/2 :: (any(), any()) → bool()

while its documented interface, describing its intended use, is:
suffix/2 :: (list(), list()) → bool()

When faced with such a discrepancy between the documented and
inferred type signature of a such a commonly used and relatively
intuitive function, one is easily tempted to assign blame to the over-
approximation that a type inferencer is usually forced to employ. In
this simple case, the culprit is clear: the first clause does not spec-
ify any type constraints for its arguments, so both arguments have
any() as their derived type. On the other hand, at least on the sur-
face, the programmer’s intention is that the second argument is of a
list() type. The problem is that the interface of lists:suffix/2
is under-specified and allows for calls of e.g. the form:

lists:suffix(a, [1,2,3|a]).

to happily return ’true’, which arguably is not part of the intended
behavior of the function. In this case, the problem can be fixed by
simply changing the first clause to either be:

suffix(Suffix, Suffix) when is list(Suffix) ->
true;

which allows the derivation of the following type signature: 4

suffix/2 :: (possibly improper list(),
possibly improper list())→ bool()

or be as follows:
suffix(Suff, Suff) when length(Suff) >= 0 ->
true;

which then derives the intended type signature:
suffix/2 :: (list(), list()) → bool()

An arguably better fix is to actually rewrite the lists:suffix/2
code using lists:reverse/2 and lists:prefix/2.

5. Consequences of Inferring Success Typings
As discussed in Section 4.3 we define success typings as describing
the types of arguments for which a function will ever possibly
return a value (having an associated return type). This view stems
from the usual definition of a function in mathematics: a function
3 Posting on the erlang-questions mailing list by Ulf Wiger.
4 The guard is list/1 ensures that the argument is either nil or a cons-cell. It does
not traverse lists to ensure nil-termination.

foo1(X) when is atom(X) ->
io:format("Error: ∼w∼n", [X]),
exit(error);

foo1(X) when is number(X) ->
X + 1.

(a) First clause has an explicit exit

foo2(X) when is atom(X) ->
X + 1;

foo2(X) when is number(X) ->
X + 1.

(b) First clause is type-incorrect

Figure 10. Functions with non-returning clauses.

accepts some parameters as input and returns a result. However,
in the context of a programming language with side-effects like
ERLANG, this has some consequences.

5.1 Handling exceptions
Consider the function in Figure 10(a). The first clause contains an
explicit guard test to find out if the argument is an atom, and then
prints an error message and exits without returning to its caller.
Thus, this clause does not contribute to the success typing for the
function and the inferred type signature for this function is:

foo1/1 :: (number()) → number()

Note that the programmer’s intention to do something with atoms,
namely print an explicit error message, is not reflected in the in-
ferred type signature. In other words, success typings do not take
side effects into account and treat input argument types in non-
returning clauses similarly to any other type that the function does
not explicitly handle (e.g., to X being a list in this example).

A similar situation happens when instead of an explicit exit, a
function clause does not return due to a type error. If the function
foo2/1 in Figure 10(b) is called with an atom, it will definitely
raise a runtime exception. The success typing once again disregards
the failing clause, and the inferred type signature is:

foo2/1 :: (number()) → number()

5.2 Non-returning functions and servers
A related problem is that concurrent ERLANG applications often
use the concept of servers. These are possibly non-returning func-
tions that respond to received messages (effectively via a side-
effect), and then perform a tail call to themselves, effectively im-
plementing an infinite loop that cannot return. In effect, these func-
tion must be annotated as having no return, simply because they
have none. But then the problem arises: What is the difference, ex-
pressed in success typings, between a function call that does not
return and a function call that fails?

An example of a simple server can be found in Figure 11(a).
Note that the input argument has to be a pid, but since our type
inference cannot differentiate between failing and non-returning
clauses, the success typing for this function is:

loop1/1 :: () → none()

meaning that the function will not return for any type of input
argument, which is of course correct.

One solution to this problem is to modify the server as shown in
Figure 11(b). Now the server has a returning clause and its inferred
success typing is:

loop2/1 :: (pid()) → ok

Since servers are common in ERLANG and having to rewrite
the server code violates the goal from Section 3.1 that TYPER

-module(server1).
-export([loop1/0]).

loop1(Parent) when is pid(Parent) ->
receive

{ Pid, Msg} ->
Parent ! Msg,
loop1(Parent)

end.
(a) Forever running server.

-module(server2).
-export([loop2/0]).

loop2(Parent) when is pid(Parent) ->
receive
stop ->

ok;
{ Pid, Msg} ->

Parent ! Msg,
loop2(Parent)

end.
(b) Server that eventually stops.

Figure 11. Two servers.

should be able to take any ERLANG program, we are currently
investigating possible ways to distinguish between failing and non-
returning function clauses.

6. A Taste of Performance
As mentioned in Section 3.1, one of the desired properties for
TYPER is that its analysis should be fast and scalable. Table 2
shows times for deriving type annotations for various applications
of Erlang/OTP R10B-5 when running on an 2GHz AMD64-based
machine with 1GB memory running Linux. As can be seen, the
type inference, although not blindly fast, is perfectly usable.

Application Lines Time
asn1 40,045 10m45s
gs 17,371 57s
inets 22,344 1m18s
kernel 39,031 1m53s
mnesia 24,042 1m09s
hipe 90,526 6m53s
snmp 42,317 1m43s
sasl 9,276 22s
ssl 19,703 34s
stdlib 56,148 6m59s
tools 14,531 3m42s

Table 2. Times for annotating some Erlang/OTP applications.

7. Related Work
Till now, there have been various attempts to make the type aware-
ness greater in the ERLANG community. Two formally documented
type systems have been developed: one based on subtyping by Mar-
low and Wadler [6] and one based on soft typing by Nyström [7]. So
far, neither has been widely used in ERLANG development, partly
due to those efforts never becoming mature tools or integrated in
the Erlang/OTP environment. Besides this reason, in the former
case, we believe that the reasons include that the type system tries
to impose a certain style of programming to ERLANG, closer to
the one in statically typed languages, for example by demanding
explicit handling of failing cases and manually adding type anno-
tations. It would certainly require a significant amount of effort or

-r applications Directories are searched recursively for subdirectories containing .erl or .beam files
(depending on the type of analysis).

-o file Leave the annotation results in the specified file (or dir).
-stdout Send the annotation results to stdout instead of writing it to file(s).
--byte Analyze BEAM bytecode rather than Erlang source code (default).
-Dname (or -Dname=value) When analyzing from source, pass the define to TYPER.
-I include dir when analyzing from source, pass the include dir to TYPER.
-pa dir Include dir in the library search path. Useful when analyzing files with ’-include lib()’ directives.

Figure 12. Description of some of TYPER’s command line options.

legacy code to adopt and a fair amount of discipline for newer code
to adhere to this style of programming. In contrast, TYPER is com-
pletely automatic and does not impose any change to existing pro-
grams or coding practices to be useful, but instead only implicitly
encourages a more type-friendly development of ERLANG code.

An existing tool for annotating Erlang code with documentation
information is edoc. It produces API documentation from manual
type annotations, taking ideas from javadoc as initial inspiration,
adopting them to the context of ERLANG, and often extending
them. In contrast to TYPER, edoc does not try to infer types
and it provides no mechanisms to verify that the types in the
documentation correspond to types used in the code. As a result,
there is an obvious risk that the code evolves and the documentation
does not, rendering the documentation obsolete, leaving manual
inspection as the only tool to find this out.

In the context of Scheme, which is also a dynamically typed
functional language, type inference has been explored in the
DrScheme/MrSpidey programming environments where the pro-
grammer has possibility to interactively inspect the types at specific
program points. In [3] the authors also describe a way of dealing
with imprecision in the analysis that is similar to our suggestions
in Section 4.9 for tuning the code for better analysis precision.

In both dynamically and statically typed languages there has
been a lot of work on automatic type inference. The work that is
based on unification is of little relation to ours, since unification-
based type inference is typically used in Hindley-Milner type sys-
tems without subtyping. The work using constraint-based type in-
ference (see [1] for an early such work) is more closely related.
However, the work which is most closely related is that on infer-
ring principal typings by Jim [4] (but see also [8]). Like success
typings, principal typings allow for compositional type inference.
More specifically, a principal typing is not only a principal type but
also an associated environment. This resembles our success typ-
ings in that we say that the annotated type signature only holds if
the arguments in an application are subtypes of the arguments in
the signature. In some sense an environment is exported from the
function to the call site. If the types in the exported environment
contradict the types at the call site, the call will fail, but the typing
of the called function still holds.

8. Concluding Remarks
Sometimes the arguments between advocates of static typing and
those of dynamic typing verge on religious wars. One side claims
the virtue of catching type errors at compile time, the other claims
freedom of expression and flexibility. One side claims careful
type-based design of interfaces, the other claims rapid prototyp-
ing. Luckily, in this paper, we do not have to choose side in this
discussion. We can simply state that the creator made ERLANG
dynamically typed, and this is not likely to drastically change in
the near future. On the other hand, we hold that creating software
tools like TYPER which raise the level of type awareness in the
ERLANG community is probably a good idea, especially if such
tools can help developers to maintain their code more easily or to

understand code written by somebody else, without sacrificing any
of the characteristics and flexibility of the language.

Acknowledgments
This research has been supported in part by VINNOVA through
the ASTEC (Advanced Software Technology) competence center
as part of a project in cooperation with Ericsson and T-Mobile.

References
[1] A. Aiken and E. L. Wimmers. Type inclusion constraints and type

inference. In Functional Programming Languages and Computer
Architecture, pages 31–41, 1993.

[2] J. Armstrong, R. Virding, C. Wikström, and M. Williams. Concurrent
Programming in Erlang. Prentice Hall Europe, Herfordshire, Great
Britain, second edition, 1996.

[3] R. B. Findler, J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi,
P. Steckler, and M. Felleisen. DrScheme: A programming environment
for Scheme. Journal of Functional Programming, 12(2):159–182, Mar.
2002.

[4] T. Jim. What are principal typings and what are they good for?
In Proceedings of the 23th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 42–53. ACM Press, Jan.
1998.

[5] T. Lindahl and K. Sagonas. Detecting software defects in telecom
applications through lightweight static analysis: A war story. In C. Wei-
Ngan, editor, Programming Languages and Systems: Proceedings of
the Second Asian Symposium (APLAS’04), volume 3302 of LNCS,
pages 91–106. Springer, Nov. 2004.

[6] S. Marlow and P. Wadler. A practical subtyping system for Erlang.
In Proceedings of the ACM SIGPLAN International Conference on
Functional Programming, pages 136–149. ACM Press, June 1997.

[7] S.-O. Nyström. A soft-typing system for Erlang. In Proceedings of
ACM SIGPLAN Erlang Workshop, pages 56–71. ACM Press, Aug.
2003.

[8] J. B. Wells. The essence of principal typings. In Proceedings of the 29th
International Colloqium on Automata, Languages, and Programming,
volume 2380 of LNCS, pages 913–925. Springer, 2002.

A. More information on TYPER
In Figure 12 the command line options of TYPER are listed. Note
that, where applicable, options are analogous to the options that the
ERLANG compiler command erlc takes.

