Bit-level Binaries and Generalized Comprehensions in Erlag *

Per Gustafsson

Konstantinos Sagonas

Department of Information Technology
Uppsala University, Sweden

{pergu,kostis}@it.uu.se

Abstract

Binary (i.e., bit stream) data are omnipresent in computerreet-
work applications but most functional programming langesagur-
rently do not provide sufficient support for them. Erlang sex-
ception since it does support direct manipulation of bindaya,
albeit currently restricted to byte streams, not bit streafo ame-
liorate the situation, we extend Erlang’s built-in binaatatype so
that it becomes flexible enough to handle bit streams prapEol
further simplify programming on bit streams we then show ow
nary comprehensions can be introduced in the language amd ho
binary and list comprehensions can be extended to allow laieth
nary and list generators.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) 1an
guages

General Terms Design, Languages

Keywords Erlang, bit-streams, comprehensions, binaries

1. Introduction

Most functional programming languages have support foripaan
ulating objects such as numbers (integers and floats), afseas

quences of alphanumeric constants), and compound ternfis suc

as lists and structures (tuples). Some also provide a pot#bir
records that allows abstraction and often (some form ofeabj
oriented-style program development. However, most ofeHas-
guages lack facilities for directly manipulating raw stresaof bits
and bytes.

Erlang is a functional language that breaks the mold in that,
addition to the datatypes described above, it also has d@ygata
which can represent these streams dirediigaries.

Binaries were first introduced into Erlang in 1992 to provéste
efficient container for object code. Subsequently, it wasgeized
that binaries can be used in applications that perform ektei/O,
networking TCP/IP-style of communication, in GUI systerasd

* Research supported in part by grant #621-2003-3442 fronStedish Research
Council and by the Vinnova ASTEC (Advanced Software Tecbgy) competence
center with matching funds by Ericsson AB.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

Erlang’05 September 25, 2005, Tallinn, Estonia.
Copyright(© 2005 ACM 1-59593-066-3/05/0009. . . $5.00.

most importantly in protocol programming which is the breaml-
butter of telecommunication applications. Recognizing ithpor-
tance of binaries, in 1999, a proposal for a binary datatype w
presented in [5] and a revised version of it was subsequaeritly-
duced into the Erlang/OTP system in 2000.

The syntax that was introduced made it easy to handle streams
of bytes in Erlang. For example consider the following sienalsk:
given a stream consisting of 3-byte chunks we want to return a
stream consisting of those 3-byte chunks whose first bytens. z
This can be written in the following manner:

keep_0XX(<<0:8,X:16,Rest/binary>>) ->
<<0:8,X:16,keep_0XX(Rest) /binary>>;

keep_0XX(<<_:24,Rest/binary>>) ->
keep_OXX(Rest);

keep_0XX(<<>>) ->
<<3>>,

Now consider that instead of a byte stream we want to do the sam
task with a bit stream of 3-bit chunks. We would then like ib®
possible to write a program like this:

keep_0XX(<<0:1,X:2,Rest/binary>>) ->
<<0:1,X:2,keep_OXX(Rest) /binary>>;

keep_0XX(<<_:3,Rest/binary>>) ->
keep_OXX(Rest) ;

keep_0XX(<<>>) ->
<<3>>.,

Unfortunately, in Erlang/OTP R10B this program would noinzo
pile, let alone work. This is due to the restriction that aildries
need to have a bit-size which is evenly divisible by eight. Wit
to lift this restriction to extend Erlang’s facilities foredling with
bit streams so as to match the support for handling byteragea

To see how we can further simplify bit stream programming, le
us consider how we would perform the task described abovey usi
structured terms. To do this as conveniently as possible awddv
want the bit stream to be represented as a list of 3-tuple=n Wite
could perform this task using the following program:

keep_O0XX([{0,B2,B3}|Rest]) ->
[{0,B2,B3} |keep_OXX(Rest)];
keep_OXX([{1,_,_}IRest]) ->
keep_OXX(Rest);
keep_OXX([1) ->
.

or by using a list comprehension simply as:

keep_OXX(List) ->
[{0,B2,B3} || {0,B2,B3} <- List].

With such a short and elegant solution why would we not use
structured terms to perform this task? Notice that there aire
least two problems with this solution. First, the structlterm

representation comes with a large space overhead: if wewese t
words to represent a cons cell and four to represent a 3;tugle
need six words in total to represent each 3-bit chunk. On a 64-
bit machine, this would amount to a use of 384 bits to reprte3en
bits of information. Second, the input bit stream is likebyhtave
originated from somewhere else. We either received it from t
network or read it from a file, so if we want to manipulate it dist
of triples, we need to transform it to and from this repreataon.
What we want to do instead is to extend the facilities for ma-
nipulating streams in Erlang in such a way as to make it ptessib
to write an equally concise solution which operates diyeatl bit
streams. That is we want it to be possible to write Heep_0XX
function manipulating binaries as concisely as we did ferstruc-
tured term representation of the bit stream, i.e., with dddethe
one below:

keep_OXX(Bin) ->
<<<<0:1,B:2>> || 0:1,B:2 <<- Bin>>.

This will be achieved partly by allowing binaries whose &iites
are not evenly divisible by eight and partly by introducingdry
comprehensions for binaries. The latter are analogousttadim-
prehensions for lists.

Contributions The contributions of this paper are as follows:

e We extend the Erlang binary datatype in various directions
to allow manipulation of bit streams to be as convenient and
flexible as manipulation of lists without sacrificing effiniy.

e We show how Erlang built-in-functions that deal with bireari
can be extended to handle extended binaries.

¢ We generalize the concept of comprehensions from list cempr
hensions to list and binary comprehensions which can use bot
list and binary generators.

Overview To make the paper self-contained and to set the basis

for our proposed extensions, the next section reviews tharyi
datatype and binary pattern matching as currently impleetkeim

the Erlang/OTP system. Our extensions to binary constmetnd
pattern matching are described in Section 3. How this ekiaas
influence common Erlang built-ins is discussed in SectioBet-
tion 5 introduces binary comprehensions. We then show in Sec

Segments Each segment expression has the general syntax:
Value:Size/SpecifierList

where both theize and theSpecifierList are optional. When
they are omitted, default values are used for these specifitie
Value field must however always be specified. In a binary match,
the Value can either be an Erlang term, a bound variable, an
unbound variable, or the don't care variablé The Size field
can either be an integer constant or a variable that is boand t
an integer. TheSpecifierList is a dash-separated list of up to
four specifiers that specify type, signedness, endianessuait.
Some of the different forms of type specifiers are shown irerab
together with a brief description of their use; they are aimgd in
detail below. The specifiers for signedness and endianesacdr
described in this paper, but a description of these spegitian

be found in [1]. If all type specifiers are used, the syntaxaite
segment expression is:

Value:Size/Type-Signedness-Endianess-unit:Unit

Thesize specifier gives the size of the segment measured in units.
Thus the size of the segment in bits (hereafter calledffestive
size) will be Size * Unit.

Types The bit syntax allows three different types to be specified
for segments of binaries: integers, floats, and binaries.

e Theinteger type specifier is the default and the segment can
then be of any size. The default specifiers for an integer sagm
are a size of 8 bits, and a unit of 1.

e Thefloat type specifier only allows effective sizes of 32 or 64
bits. The default specifiers for a float segment are a size of 64
bits, and a unit of 1.

e The binary specifier allows effective sizes that are evenly
divisible by 8. The default specifiers for a binary segment is
the sizeall which means the binary is being matched out
completely. If the size of the segment is specified, the diefau
unit used is 8 bits.

Tail of a binary As mentioned, if thebinary type specifier is
used without an explicit size specifier, its size gets expdrtd the
sizeall by default. This use is similar to the familiar lisir oper-
ator since a size af11 means that the binary is matched against the

tion 6 how these comprehensions can be extended and combinedcomplete remaining binary (cf. also Example 2.1 below). Aoy

In Section 7 we show how extended binary comprehensionse&an b
implemented efficiently, and the paper ends with some coliradu
remarks.

2. Binaries as in Erlang/OTP R10B

The binary datatype in Erlang/OTP R10B represents a strdam o
8-bit bytes. Two basic operations can be performed on a yainar
creation of a new binary andnatching against an existing binary.

2.1 Creation of binaries using the bit syntax

Erlang’s bit syntax, described in [2] but see also [5], aliothe
user to conveniently construct binaries and match thesmstga
binary patterns. A bit syntax expression (called a Bin i) [8]the
building block used to both construct binaries and matchnaga
binary patterns. A Bin is written with the following syntax:

<<Segment;, Segments, ..., Segment,>>

The Bin represents a sequence of bytes. Each oBégeent;’s
specifies aegment of the binary. A segment represents an arbitrary
number of contiguous bits in the Bin. The segments are plaerd

segment however, must have a size evenly divisible by eight.

Default expansions All specifiers have default values and some-
times the defaults depend on the values of other specifiersum-
marize the rules which apply, we show how some segments are
expanded in Table 2.

Segment Default expansion

X X:8/integer-unit:1
X/float X:64/float-unit:1
X/binary X:all/binary

X:Size/binary X:Size/binary-unit:8

Table 2. Some binary segments and their default expansions

2.2 Binary matching

The syntax for matching with a binary Binary is a variable

bound to a binary is as follows:
<<Segmenti, Segments, ..., Segment,>> = Binary

TheValue; fields of theSegment; expressions that describe each

to each other in the same order as they appear in the bit syntaxsegment will be matched to the corresponding segmesitnary.

expression.

For example, if th&alue; field in Segment; contains an unbound

integer The segment’s bit sequence will be interpreted as an intgdgfault)

float The segment’s bit sequence will be interpreted as a floats&@gment’s size can then only be 32 or 64.
binary The segment’s bit sequence will not be interpreted. Theuttefait size of a binary is 8.
unit Always followed by *:” and an integer between 1 and 256 which denotes the unitBieeunit size is used to determine

the segment'sffective size which is the product of the unit size and thize field. The unit is typically used to ensure
either byte-alignment in a binary match or that a new binay & size that is divisible by 8 regardless of the value of
theSize field. The default unit size is 1 for integers and floats andr&foaries.

Table 1. Binary segment specifiers: short description

variable and the effective size of this segment is 16, thisakte Binary Matching ofX

will be bound to the first 16 bits &finary. How these bits will be <<42,14,15>> <<14,15>>

interpreted is determined by tiSpecifierList of Segment;. <<24,1,2,3,10,20>> <<10,20>>
<<12,1,2,20>> 258

<<0,255>> failure

Example 2.1 As shown below, binaries are generally displayed
as a sequence of comma-separated unsigned 8 bit integets ins Table 3. Matchings for the code in Example 2.3
<<>>'s. The Erlang code:

Binary = <<10, 11, 12>>,

<<A:8, B/binary>> = Binary 3. Binaries as we want them
results in the binding = 10, B = <<11, 12>>. The binary syntax greatly simplifies the implementationetivork
Herea matches the first 8 bits @finary. Because of the default ~ Protocols in Erlang. However, sometimes the restrictionstiee
values (cf. Table 2), these eight bits are interpreted astagérB is construction of binaries, currently imposed by the undedym-

matched to the rest of the bits Bfnary. These bits are interpreted ~ Plémentation, make the use of binaries cumbersome. Letais ag
as a binary since that type specifier has been chosen. Beghuse Cconsider the task of keeping only 3-bit chunks that begirh wit

that,B matches to the rest @finary, as this is the default size for ~ 2€70- ldeally, using the binary syntax, one would want totevri
thebinary type specifier. something like the code in Figure 1.

keep_0XX(<<0:1, X:2, Rest/binary>>) ->
<<0:1, X:2, keep_OXX(Rest)>>;
keep_0XX(<<_:3, Rest/binary>>) ->

Size fields of segments are not always statically known. In fact,
it is often the case that the value of the size field is decidethé

matching of a variable in an earlier segment. Kkeep_OXX (Rest) ;
keep_0XX(<<>>) —->
<<3>>,
Example 2.2 The Erlang code:
<<8z:8/integer, Figure 1. keep_0XX using binaries without size restrictions
Vsn:Sz/integer,
Msg/binary>> = <<16,2,154,42>> However, the restriction that binaries (and sub-binangiém)

are of a size which is a multiple of eight currently make suntiec
impossible to write.

Instead, the simplest way that this task can currently be pro
grammed in Erlang/OTP R10B using the binary syntax desgribe
in the previous section (i.e., without converting to e.gsarepre-
sentation) is shown as Program 1.

results in the bindingsz = 16, Vsn = 666, Msg = <<42>>.

Naturally, pattern matching against a binary can occur in a
function head or in an Erlangase statement just like any other
matching operation. The next example shows this.

Example 2.3 Consider the case statement Program 1 Keep all 3-bit chunks which start with a zero
case Binary of -module (keep_OXX_R10B) .
<<42:8/integer, X/binary>> -> -export ([keep_0XX/1]) .
handle_bin(X);
<<8z:8, V:Sz/integer, X/binary>> when Sz > 16 -> keep_0XX(Bin) ->
handle_int_bin(V, X); keep_0XX(Bin, 0, 0, <<>>).
<<_:8, X:16/integer, Y:8/integer>> ->
handle_int_int (X, Y) keep_0XX(Bin, N1, N2, Acc) ->
end. Padl = (8 - ((N1+3) rem 8)) rem 8,

Pad2 = (8 - ((N2+3) rem 8)) rem 8,

Here Binary will match the pattern in the first branch of the case Bin of

case Statement if its first 8 bits represented as an integer have th <<_:N1, 0:1, X:2, _:Padl, _/binary>> ->

value 42. In this branch of the case statem#ntjll be bound to a NewAcc = <<Acc:N2/binary-unit:1, 0:1, X:2, 0:Pad2>>,
binary consisting of the rest of the bitsBfnary. If this is not the keep_OXX(Bin, N1+3, N2+3, NewAcc);

case, theminary will match the second pattern if the first 8 bits <<_:N1, _:3, _:Padl, _/binary>> ->

of Binary interpreted as an integer have a value greater than 16. keep_OXX(Bin, N1+3, N2, Acc);

<<_:N1>> >

Notice that this is a non-linear and guarded binary patt€imally, o

if Binary is exactly 32 bits longX will be bound to an integer
consisting of the second and third bytes of Himary. If neither
of the patterns match, the whole match expression will Tditee
examples of matchings and a failure to match using this cogle a As we can see the program becomes quite complicated, since at
shown in Table 3. each construction point the size of binaries has to be ediviy-

end.

ip_options (IPPacket) ->

<<4:4, HeaderLength:4, _Rest/binary>> =

<<Header:HeaderLength/binary-unit:32,
_Data/binary>> = IPPacket,

<<4:4, _HeaderLength:4, _RestOfHeader:152,
Options/binary>> = Header,

Options.

(a) Using binaries as in Erlang/OTP R10B

IPPacket,

ip_options (IPPacket) ->
<<4:4, HeaderLength:4, _RestOfHeader:152,
Options: (32*(HeaderLength-5)) /binary,
_Data/binary>> = IPPacket,
Options.
(b) Using a complex size expression

Figure 2. Functions extracting the options from an IPv4 packet

ible by eight. To ensure this, we have to keep track of the rrmb

of bits we have consumed and the number of bits that we have

kept in order to pad the binaries to an admissible size. Hgamo
this is not programmer-friendfyMore importantly, it subtly under-
mines the use of the bit syntax for writing high-level speeifions
of common tasks; programming becomes unnecessarily logl-le
when there is little reason it should become so.

Another problem with the current restrictions on binariesves
up when performing complex pattern matching. Consideragxitr
ing the options from an IP packet. A function which does that,
ing binaries as in Erlang/OTP R10B, is shown in Figure 2(aktF

we have to find out the length of the IP header. Then the header

is extracted from the packet and finally the options are etdth
from the header. A simple solution to extracting the optifrom
an IP packet is to allow any expression in the size field of artyin
segment. Then thep_options function could be written in the
manner shown in Figure 2(b).

A final minor inconvenience with the current implementation
of binaries in Erlang/OTP is that the type of a segment must be
specified when a binary is created. Consider this piece ad:cod

X

Even though Erlang is a dynamically typed language, in theeoti
version of the bit syntax, the code above gives rise to a “bad
argument” exception. To get the intended effect one is fbitoe
write:

<<1,2,3>>, Bin = <<X,4,5>>.

X

In binary construction, we lift this restriction and make tiype of
each segment be the same as the type of the term that thesgpres
evaluates t8.

<<1,2,3>>, Bin = <<X/binary,4,5>>.

3.1 More flexible binaries: summary of changes

In short, the difference between the binaries as they areratly
implemented in Erlang/OTP R10B and the more flexible birsarie
that we propose in this paper are:

1. A binary (or sub-binary) can have any bit-size, not neaelys
one which is divisible by eight.

2. Thesize field of a segment can contain an arbitrary arithmetic
expression (which evaluates to a non-negative integer).

1The situation is quite similar to what a C programmer wouldeht do in order to
keep track of which bits to extract from the current byte & thcoming bit stream
and how much padding is needed in the output stream.

21t is of course an error if an expression evaluates to a termselype is not one of
the allowed types of binary segments.

3. Nounit specifier is needed sin&ze is an arbitrary expres-
sion. This allows the user to uniformly specify the size af-se
ments in bits, irrespectively of the segment’s type §&.1).

4. No type specifier is needed in binary construction.

4. Adapting BIFs to handle flexible binaries

Several Erlang built-in functions already operate on hewiThese
built-ins must be extended to handle the new flexible bilsasiece
they can consist of any number of bits, not only those whote bi
size is a multiple of eight. In this section the most freqlyensed
built-ins which handle binaries are discussed.

4.1 binary to_list(Bin)

This built-in constructs a list of values between 0 and 25Bnethe
first element holds the value of the first byte of the bingty, the
second element holds the value of its second lgte The built-in
succeeds as long &sn is a binary.

It can be defined in Erlang in the following way:

binary_to_list(<<X:8,Rest/binary>>) ->
[X|binary_to_list(Rest)];
binary_to_list(<<>>) ->
0.

With this definition,binary_to_1list (Bin) will fail if Bin has a
size in bits which is not evenly divisible by eight. This istrap-
propriate;binary_to_list (Bin) should always succeed as long
asBin is a binary. Furthermore, the invariant:

Bin == list_to_binary(binary to_list(Bin))

is important and should be preserved. This leads us to define
binary_to_list(Bin) as follows:

binary_to_list(<<X:8,Rest/binary>>) ->
[X|binary_to_list(Rest)];
binary_to_list(<<>>) ->
1;
binary_to_list(Bin) ->
[Bin] .

That is if Bin has a bit size which is not evenly divisible by eight,
the function returns a list whose elements are the byte@imwfind
its last element is a binary consisting of the remaining. hitsing
this definition the following call to the built-in:

binary_to_list(<<0:20>>)
returns the lisf0,0,<<0:4>>].

4.2 size(Bin)

This built-in function returns the size of the binaByn in bytes.
We need to define whatize (Bin) should return in case the size
of the binary in bits is not evenly divisible by eight. Our ate®
is to havesize (Bin) return the minimal number of bytes needed
to represent the binary. That is for a binary which consi§t&0
bits like the<<0:20>> above,size (<<0:20>>) returns 3. This is
because the 20-bit binary needs three bytes to be reprdsente

It would however be necessary to introduce a new built-itedal
bitsize(Bin) which returns the size of a binary in bits (in our
example 20).

5. Examples of binary comprehensions

Binary comprehensions are expressions that are intendattap-
sulate recursion patterns on the binary datatype. They ratm-a
gous to the widely-used list comprehensions [4], which im @are
expressions which are syntactic sugar for the combinatiamp

andfilter on lists.

The main difference between a list and a binary in this case
is that what constitutes an element in a list is sometlaimgiori
and unambiguously defined. In contrast, because binagdgams
without (much of a) structure, for binary comprehensiores ubker
must explicitly specify what is considered an element ofreaby.

As a first example of the usefulness of binary comprehensions
we show howbinnot a function which inverts a binary could be
implemented using this construct. One possible implentients
the following:

binnot (Bin) ->

<<bnot(X):1 || X:1 <<- Bin>>.

where bnot/1 is the built-in bitwise Booleamot operator of
Erlang for integers. As can be seen, here we consider eaéls bit
an element in the binary. If we knew that the actual elemerd si
of the binary is something else, for example that we have arpin
whose size is divisible by eight (i.e., a binary which is awsate
of bytes), we could have definednnot in the following way:

binnot (Bin) ->
<<bnot(X):8 || X:8 <<- Bin>>.

In short, in a binary comprehension it is both possible and
mandatory to specify what should be considered an elemeheof
input binary and how the output segments of the output binegy
to be constructed.

Thebinnot example shows how a binary comprehension can
be used to perform aap operation on binaries. The following
example introduces filtering as well. Consider Heep_0XX task of
the introduction. It is quite clear that each 3-bit chunkrisséement
in the binary. If the binary were converted to a list whereheac
element consisted of a 3-bit binary, we would write the feileg
list comprehension to keep the 3-bit binaries starting aitero:

[<<0:1,B:2>> || <<0:1,B:2>> <- List]

Note that here the binary pattern to the right |df works as a
filter as well as a selector; only elements in the list which match
the pattern are kept in the output list of 3-bit binaries.

In this example the elements were already defined when the lis
was constructed. For a binary comprehension the elements mu
be defined in the comprehension. Using binary comprehesision
keep_0XX would simply be written as:

keep_OXX(Bin) ->
<<<<0:1,B:2>> || 0:1,B:2 <<= Bin>>.

Notice that this function works in exactly the same way aduhe-
tion of Figure 1. Here we are forced to wrap the “output” segime
in a binary construction because the syntax for comprebessil-
lows for only a single segment as output. Also notice thasthiity

to create binaries of arbitrary size — of 3 bits in this cases-ai
prerequisite for flexible binary comprehensions.

Itis also important to understand what would happesiif is a
binary whose bit size is not evenly divisible by three. Irsttise we
would get a matching error and the binary comprehension avoul
raise an exception. Why this is the case is evident sincéuthédion
works in exactly the same as the function shown in Figure laand
1-bit or a 2-bit binary does not match any of the clauses in tha
function.

Sometimes more complicated, perhaps user-defined, fijtesin
needed in which case a filter expression is written at the énd o
the binary comprehension. In the following example, whicbves
the power both of creating binaries whose size is possibtyano
multiple of eight and of using filters in binary comprehemsiowe
only want to use elements which are in a certain range anddegno
the rest.

Example 5.1 (UU-decode)f UUencodedBin is a binary file that
has previously been UU-encoded then we can decode it wish thi
binary comprehension:

uudecode (UUencodedBin) ->
<<(X-32):6 || X <<- UUencodedBin, 32=<X, X=<95>>.

That is, if the value of a byte is between 32 and 95, we should
subtract 32 from that value and put it in the next six bits ef tiew
binary we are creating. (Recall that the default expansiorite
segmenk above isX:8/integer-unsigned; cf. also Table 2). If
the value is not in that range it is dropped. (This appliesirie |
breaks which are inserted into UU-encoded binaries to make s
that it is possible to display the binary.)

6. Extended comprehensions

The binary comprehensions that we introduced in the previou
section use binaries as generators, but there is no reare¢as
disallow list generators. This makes it possible to comstoinaries
from lists in a more flexible way than using st_to_binary.

Consider for example a situation where we have a list cangist
of pairs where the first element contains an integer whicressmt
the number of bits that should be used to encode the integer co
tained in the second element. Then we could write the foligwi
comprehension:

<<X:S |l {8,X} <- List>>

This kind of situation could occur during Huffman coding for
example. We call binary comprehensions which allow botk bsd
binaries as generatoestended binary comprehensions.

It also seems reasonable to allow binary generators indistc
prehensions. This is very useful when trying to convert atyin
format into a structured term representation. To give a @BEX-
ample we show in Program 2 how to collect the filenames and the
uncompressed and compressed sizes of all files in a zipvarf3ii
using a list comprehension with a binary generator.

Program 2 Extracting file information for files in a zip-archi ve

-module(zip) .
-export([collect_fileinfo/11).

-define (MAGIC, 16#04034b50).
-define (SPEC, integer-little).

collect_fileinfo(ZipBin) ->
[binary_to_list(FileName) ,CompSz,UnCompSz ||
7MAGIC:32/7SPEC, _:80, _Crc32:32/7SPEC,
CompSz:32/7SPEC, UncompSz:32/7SPEC,
FileNameSz:16/7?SPEC, ExtraSz:16/7SPEC,
FileName: (8*FileNameSz) /binary, _:(8*ExtraSz),
_:(8%CompSz) <<- ZipBin]

We call list comprehensions which also allow binary germsat
extended list comprehensions. We collectively refer to extended list
and extended binary comprehensions, as extended compref&n

6.1 Extended comprehensions with multiple generators

Although our extended comprehensions have filtering céipabi
and permit pattern matching in binary generators, the ohsér
reader has no doubt noticed that we have not catered forptaulti
generators. This ability indeed exists in list comprehemsiin
Erlang; for example, the following:

{x,Y} Il X <= [1,2,3], Y <- [4,5], is_odd(X)]
produces the list of paird{1,4},{1,5},{3,4},{3,5}1.

[[E11P< EL,Q]

end, end,
Fun(Ef, ,Fun) Fun(Ep ,Fun)
end end

begin [E || Segi,...,-Segy <<- Ep,Ql| &
Fun =
fun([P|T1],F) —> begin

[E || Q1 ++ F(T1,F); Fun = [E || Er,Ql] &

([-IT1],F) -> fun(<<_Segi,...,-Segi ,Rest/binary>>, F) ->
F(T1,F); [E Il Q] ++ F(Rest, F); case Ep of

a,F) —> (<<>>, F) -> true ->
1 1 [E Il Ql;

-
1

end

(a) Rule 1 (b) Rule 2 (c) Rule 3 (d) Rule 4

Figure 3. Reduction rules for extended list comprehensions

|<<S Il P <~ EL,Q>>| o

end, end,
Fun(Ef, ,Fun) Fun(Ep ,Fun)
end end

begin |<<S I181,...,-8; <<- EBaQ>>| e
Fun =
fun([P|T1],F) -> begin

<<<<S || @>>, F(T1,F)>>; Fun = &

(L-IT1]1,F) —> fun(<<_S1,...,-S;,Tl/binary>>, F) ->
F(T1,F); <<<<S || @>>, F(T1,F)>>; case Ep of

aa,-F) -> (<<>>, F) -> true ->
<<>> <<>> <<S || @>>;

> 1> =

<<>>
end <<S>>

(a) Rule 5 (b) Rule 6 (c) Rule 7 (d) Rule 8

Figure 4. Reduction rules for extended binary comprehensions

There is nothing wrong with multiple generators, but our ex-
perience is that they are rarely used in practice. One cousgip
bly conceive of interesting uses for multiple generatoritended
comprehensions, so, in the spirit of consistency, exprasdike:

<<<<X:8,Y:8>> || X <<= <<1,2,3>>,
Y <- [4,5], is_odd(X)>>

producing the binarg<1,4,1,5,3,4,3,5>> should also be al-
lowed. Our translation in the next section caters for this.

6.2 Semantics of extended comprehensions

To formalize the semantics of extended comprehensionslam@r
we will show how these extended comprehensions can beatadsl|
into Erlang code. The syntax for extended list comprehessis:
[E| 1Q] whereE is an expression arlis a comma-separated list of
zero or more qualifiers. A qualifier is either a list genergdsinary
generator or a filter expression. The syntax for a list geneiia
P <- E;, whereP is a pattern and;, is an expression. The syntax
for a binary generator i8; ,...,S; <<- Ep wheres;,...,S; are
segments anHp is an expression. A filter expressia@ is simply
an ordinary Erlang expression. It either evaluatestae or to
something else which mearfalse. For a program to be type
correctE;, must always evaluate to a list aBg must evaluate to a
binary.

In order to simplify the handling of binary generators, whic
were written using the general form:

S1,...,Sx <<- Ep

let us define a segmens, = Var;:Size;/SpecifierList; if
S; = Value;:Size;/SpecifierList; and Value; is a bound

variable or a constant, otherwiss; = S;. Let us also define
FilterExpr asVar; == Value; for all i such thatS, # _S;.
This allows us to rewrite a binary generator as:

S1,...,8; <<= Ep, FilterExpr

When binary generators are rewritten in this manner theatémtu
rules shown in Figure 3 can be used to translate extended list
comprehensions into Erlang code.

The syntax for extended binary comprehensions¢s:| | Q>>
where S is a segment and Q is a comma-separated list of qusalifie
The qualifiers are the same as the qualifiers for list commsbes.
Rewriting binary generators in the same way as describedeabo
we can translate binary comprehensions into Erlang coadh tise
reduction rules shown in Figures 4.

Note that the rules in Figure 3(d) and 4(d) where there are no
qualifiers in the comprehensions are not likely to be very mom
in code, but we allow them to make the description of the sé¢icen
more uniform.

To show how these rules can be used to translate a comprehen-
sion into Erlang code consider the following comprehension

<<(X+Y):16 || X:16 <<- Bin, Y <- List, X>Y>>

Using rule 6 we can transform that into the code shown in Eigur
The comprehension:

<<(X+Y):16 || Y <- List, X>Y>>

can then be reduced using rule 5. Doing this we get the codersho
in Figure 6.

Using reduction rule 7 and then rule 8 on the comprehen-
sion:<<(X+Y):16 || X>Y>> we get the code shown in Figure 7.

begin
Funl =
fun(<<X:16,T1l/binary>>, F1) ->
<< (X+Y):16 || Y <- List, X>Y>>,
F1(T1l, F1)>>;
(<<>>, _F1) —>
<<>>
end,
Funl(Bin, Funl)
end

Figure 5. Code produced by applying reduction rule 6 on
<<(X+Y):16 || X:16 <<- Bin, Y <- List, X>Y>>

begin
Fun2 =
fun([YI|T1],F2) ->
<KL (X+Y) :16 || X>Y>>,
F2(T1, F2)>>;
(f_ima1, rF2) ->
F2(T1, F2);
aa, _F2) ->
<<>>
end,
Fun2(List, Fun2)
end

Figure 6. Code produced by applying reduction rule 5 on
<<K(X+Y):16 || Y <- List, X>Y>>

case X>Y of
true ->
<< (X+4Y) :16>>;
->
<<5>>

end

Figure 7. Code produced by applying reduction rule 7 and 8 on
<<(X+Y):16 || X>Y>>

Putting it all together we get the final result which does res any
comprehensions shown in Figure 8.

begin
Funl =
fun(<<X:16,T1l/binary>>, F1) ->
<<begin
Fun2 =
fun([YIT1],F2) ->
<<case X>Y of
true ->
<< (X+Y) :16>>;
_ =
<<>>
end,
F2(T1, F2)>>;
([_IT1],F2) ->
F2(T1,F2);
a, _F2) -
<<>>
end,
Fun2(List,Fun2)
end,
F1(T1l, F1)>>;
(<<>>, _F1) —>
<<>>
end,
Funl(Bin,Funl)
end.

Figure 8. Final code when all comprehensions have been reduced
in<<(X+Y):16 || X:16 <<- Bin, Y <- List, X>Y>>

begin
Funl =
fun(<<X:16,T1l/binary>>, F1) ->
[<*X || X < 256%>| F1(T1,F1)];
(k<>>, _F1) —>
(]
end,
Fun1(Bin,Funl)
end

Figure 9. Code produced by applying reduction rule 10 on the
comprehensior*X || X:16 <<- Bin, X < 256%>

Fresh names need to be used for the closures when translatinga|ways produces a possibly nested list of binaries. It caretheced

comprehensions with this method. This is necessary sineader
lacks support for recursive closures.

It would be possible to have a different semantics for binary
comprehensions where the last couple of bits would just ipgpek.
The only changes to the reduction rules that need to be made fo
them to have this semantics would be to change the seconskclau
in reduction rules 2 and 6 frortk<>>, F) into (_, F).

7. Implementation

Implementing extended comprehensions using the redunties
introduced in Sect. 6.2 would be very inefficient since canging
the resulting list or binary would be quadratic in their recive
sizes.

We will present a simple translation scheme for extended bi-
nary comprehension into Erlang code which avoids the gtiadra
complexity cost for constructing the resulting binary.

First we translate an extended binary comprehensicsit | Q>>
into list_to_binary(<*S||Q*>). <xS| |Q*> is a comprehension
used only in this compilation scheme which has the propésyit

using the reduction rules shown in Figure 12.
A small example will show what kind of code we will end up
with using this approach. Consider the comprehension:

<<X || X:16 <<- Bin, X < 256>>
This comprehension would first be translated into:
list_to_binary(<*X || X:16 <<- Bin, X < 256%>)

This can be reduced using reduction rule 10 into the code show
in Figure 9. The comprehension that is left in that piece afeco
<*X || X < 256%> can be translated into the expression shown
in Figure 10 and the complete resulting code is shown in Eigar

8. Concluding remarks

The treatment of binaries, and bit-level data structuregeineral,
is a neglected area in functional languages. The only netexi
ception that we are aware of is the bit syntax in Erlang. Therex
sions to the binary datatype presented in this paper malaiém
flexible and the extended comprehensions we propose make pro

|<*S |l P <- EL,Q*>| o
begin |<*s 11S1,...,-8 <<- EB,Q*>| &
Fun =
fun([P|T1],F) -> begin
[<*S || @+>|F(T1,F)]; Fun = o
([_IT1],F) -> fun(<<_S1,...,-Si,Tl/binary>>, F) ->
F(T1,F); [<xS || Q*>| F(T1,F)]; case Ep of
a,r) - (<<>>, F) -> true ->
0] <*xS || Q*>;
end, end, - > ==
Fun(Ef, ,Fun) Fun(Ep ,Fun) 1
end end end [<<8>>]

(a) Rule 9 (b) Rule 10 (c) Rule 11 (d) Rule 12

Figure 12. Reduction rules for temporary comprehensions

case X < 256 of Acknowledgments
tnEiX;] ; We thank Mikael Pettersson, Bjorn Gustavsson, Thomasdrard
Y and Tony Rogvall for comments on an earlier version of thjzgpa
- [] and Jay Nelson for starting an interesting discussion oéryin
end comprehensions on the Erlang mailing list.

Figure 10. Code produced by applying reduction rule 11 and 12 References

on the comprehensiotX || X < 256>> [1] P. Gustafsson and K. Sagonas. Adaptive pattern matabiniginary
data. InProgramming Languages and Systems: 13th European
Symposium on Programming, ESOP 2004, Proceedings, pages 124—
list_to_binary(139. Springer, Mar. 2004.
begin [2] P. Nyblom. The bit syntax - the released versionPinceedings of the
Funl = Sxth International Erlang/OTP User Conference, Oct. 2000. Available
fun(<<X:16,Tl/binary>>, F1) -> athttp://www.erlang.se/euc/00/.

[case X < 256 of [3] PKWARE Inc. Appnote.txt - .zip file format specificatiomersion

true -> 6.2.0, Apr. 2004www.pkware.com/company /standards/appnote/.

[<<X>>]; [4] P. Wadler. List comprehensions. In S. L. Peyton Joneoedhe

- > Implementation of Functional Programming Languages, chapter 7,

] pages 127-138. Prentice-Hall International, 1987.

end | F1(T1,F1)]; [5] C. Wikstrom and T. Rogvall. Protocol programming in &y using

(<<>>, _F1) -> binaries. InProceedings of the Fifth International Erlang/OTP User

[1 Conference, Oct. 1999. Available dittp://www.erlang.se/euc/99/.

end,
Fun1(Bin,Funl)

end)

Figure 11. Code produced when reducing all comprehensions in
<<X || X:16 <<- Bin, X < 256>>.

gramming involving binaries more concise and more “furnri®

in style. We have every reason to believe that, in programs ma
nipulating bit stream data, binary comprehensions wilinéwally
become as common as list comprehensions are in programh whic
manipulate lists.

We are currently discussing with the OTP implementatiomtea
how the changes proposed in this paper can be incorporatied in
Erlang/OTP. We believe that we will be able to add the changes
introduced here as an experimental feature in Erlang/OTR R1

