
Bit-level Binaries and Generalized Comprehensions in Erlang ∗

Per Gustafsson Konstantinos Sagonas
Department of Information Technology

Uppsala University, Sweden
{pergu,kostis}@it.uu.se

Abstract
Binary (i.e., bit stream) data are omnipresent in computer and net-
work applications but most functional programming languages cur-
rently do not provide sufficient support for them. Erlang is an ex-
ception since it does support direct manipulation of binarydata,
albeit currently restricted to byte streams, not bit streams. To ame-
liorate the situation, we extend Erlang’s built-in binary datatype so
that it becomes flexible enough to handle bit streams properly. To
further simplify programming on bit streams we then show howbi-
nary comprehensions can be introduced in the language and how
binary and list comprehensions can be extended to allow bothbi-
nary and list generators.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages

General Terms Design, Languages

Keywords Erlang, bit-streams, comprehensions, binaries

1. Introduction
Most functional programming languages have support for manip-
ulating objects such as numbers (integers and floats), atoms(se-
quences of alphanumeric constants), and compound terms such
as lists and structures (tuples). Some also provide a notation for
records that allows abstraction and often (some form of) object
oriented-style program development. However, most of these lan-
guages lack facilities for directly manipulating raw streams of bits
and bytes.

Erlang is a functional language that breaks the mold in that,in
addition to the datatypes described above, it also has a datatype
which can represent these streams directly:binaries.

Binaries were first introduced into Erlang in 1992 to providean
efficient container for object code. Subsequently, it was recognized
that binaries can be used in applications that perform extensive I/O,
networking TCP/IP-style of communication, in GUI systems,and

∗ Research supported in part by grant #621-2003-3442 from theSwedish Research
Council and by the Vinnova ASTEC (Advanced Software Technology) competence
center with matching funds by Ericsson AB.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Erlang’05 September 25, 2005, Tallinn, Estonia.
Copyright c© 2005 ACM 1-59593-066-3/05/0009. . . $5.00.

most importantly in protocol programming which is the bread-and-
butter of telecommunication applications. Recognizing the impor-
tance of binaries, in 1999, a proposal for a binary datatype was
presented in [5] and a revised version of it was subsequentlyintro-
duced into the Erlang/OTP system in 2000.

The syntax that was introduced made it easy to handle streams
of bytes in Erlang. For example consider the following simple task:
given a stream consisting of 3-byte chunks we want to return a
stream consisting of those 3-byte chunks whose first byte is zero.
This can be written in the following manner:

keep_0XX(<<0:8,X:16,Rest/binary>>) ->
<<0:8,X:16,keep_0XX(Rest)/binary>>;

keep_0XX(<<_:24,Rest/binary>>) ->
keep_0XX(Rest);

keep_0XX(<<>>) ->
<<>>.

Now consider that instead of a byte stream we want to do the same
task with a bit stream of 3-bit chunks. We would then like it tobe
possible to write a program like this:

keep_0XX(<<0:1,X:2,Rest/binary>>) ->
<<0:1,X:2,keep_0XX(Rest)/binary>>;

keep_0XX(<<_:3,Rest/binary>>) ->
keep_0XX(Rest);

keep_0XX(<<>>) ->
<<>>.

Unfortunately, in Erlang/OTP R10B this program would not com-
pile, let alone work. This is due to the restriction that all binaries
need to have a bit-size which is evenly divisible by eight. Wewant
to lift this restriction to extend Erlang’s facilities for dealing with
bit streams so as to match the support for handling byte streams.

To see how we can further simplify bit stream programming, let
us consider how we would perform the task described above using
structured terms. To do this as conveniently as possible we would
want the bit stream to be represented as a list of 3-tuples. Then we
could perform this task using the following program:

keep_0XX([{0,B2,B3}|Rest]) ->
[{0,B2,B3}|keep_0XX(Rest)];

keep_0XX([{1,_,_}|Rest]) ->
keep_0XX(Rest);

keep_0XX([]) ->
[].

or by using a list comprehension simply as:

keep_0XX(List) ->
[{0,B2,B3} || {0,B2,B3} <- List].

With such a short and elegant solution why would we not use
structured terms to perform this task? Notice that there areat
least two problems with this solution. First, the structured term

representation comes with a large space overhead: if we use two
words to represent a cons cell and four to represent a 3-tuple, we
need six words in total to represent each 3-bit chunk. On a 64-
bit machine, this would amount to a use of 384 bits to represent 3
bits of information. Second, the input bit stream is likely to have
originated from somewhere else. We either received it from the
network or read it from a file, so if we want to manipulate it as alist
of triples, we need to transform it to and from this representation.

What we want to do instead is to extend the facilities for ma-
nipulating streams in Erlang in such a way as to make it possible
to write an equally concise solution which operates directly on bit
streams. That is we want it to be possible to write thekeep 0XX
function manipulating binaries as concisely as we did for the struc-
tured term representation of the bit stream, i.e., with codelike the
one below:

keep_0XX(Bin) ->
<<<<0:1,B:2>> || 0:1,B:2 <<- Bin>>.

This will be achieved partly by allowing binaries whose bit-sizes
are not evenly divisible by eight and partly by introducing binary
comprehensions for binaries. The latter are analogous to list com-
prehensions for lists.

Contributions The contributions of this paper are as follows:

• We extend the Erlang binary datatype in various directions
to allow manipulation of bit streams to be as convenient and
flexible as manipulation of lists without sacrificing efficiency.

• We show how Erlang built-in-functions that deal with binaries
can be extended to handle extended binaries.

• We generalize the concept of comprehensions from list compre-
hensions to list and binary comprehensions which can use both
list and binary generators.

Overview To make the paper self-contained and to set the basis
for our proposed extensions, the next section reviews the binary
datatype and binary pattern matching as currently implemented in
the Erlang/OTP system. Our extensions to binary construction and
pattern matching are described in Section 3. How this extensions
influence common Erlang built-ins is discussed in Section 4.Sec-
tion 5 introduces binary comprehensions. We then show in Sec-
tion 6 how these comprehensions can be extended and combined.
In Section 7 we show how extended binary comprehensions can be
implemented efficiently, and the paper ends with some concluding
remarks.

2. Binaries as in Erlang/OTP R10B
The binary datatype in Erlang/OTP R10B represents a stream of
8-bit bytes. Two basic operations can be performed on a binary:
creation of a new binary andmatching against an existing binary.

2.1 Creation of binaries using the bit syntax

Erlang’s bit syntax, described in [2] but see also [5], allows the
user to conveniently construct binaries and match these against
binary patterns. A bit syntax expression (called a Bin in [2]) is the
building block used to both construct binaries and match against
binary patterns. A Bin is written with the following syntax:

<<Segment1, Segment2, . . ., Segmentn>>

The Bin represents a sequence of bytes. Each of theSegmenti ’s
specifies asegment of the binary. A segment represents an arbitrary
number of contiguous bits in the Bin. The segments are placednext
to each other in the same order as they appear in the bit syntax
expression.

Segments Each segment expression has the general syntax:

Value:Size/SpecifierList

where both theSize and theSpecifierList are optional. When
they are omitted, default values are used for these specifiers. The
Value field must however always be specified. In a binary match,
the Value can either be an Erlang term, a bound variable, an
unbound variable, or the don’t care variable ’’. The Size field
can either be an integer constant or a variable that is bound to
an integer. TheSpecifierList is a dash-separated list of up to
four specifiers that specify type, signedness, endianess, and unit.
Some of the different forms of type specifiers are shown in Table 1
together with a brief description of their use; they are explained in
detail below. The specifiers for signedness and endianess are not
described in this paper, but a description of these specifiers can
be found in [1]. If all type specifiers are used, the syntax of each
segment expression is:

Value:Size/Type-Signedness-Endianess-unit:Unit

TheSize specifier gives the size of the segment measured in units.
Thus the size of the segment in bits (hereafter called itseffective
size) will be Size ∗ Unit.

Types The bit syntax allows three different types to be specified
for segments of binaries: integers, floats, and binaries.

• Theinteger type specifier is the default and the segment can
then be of any size. The default specifiers for an integer segment
are a size of 8 bits, and a unit of 1.

• Thefloat type specifier only allows effective sizes of 32 or 64
bits. The default specifiers for a float segment are a size of 64
bits, and a unit of 1.

• The binary specifier allows effective sizes that are evenly
divisible by 8. The default specifiers for a binary segment is
the sizeall which means the binary is being matched out
completely. If the size of the segment is specified, the default
unit used is 8 bits.

Tail of a binary As mentioned, if thebinary type specifier is
used without an explicit size specifier, its size gets expanded to the
sizeall by default. This use is similar to the familiar listcdr oper-
ator since a size ofall means that the binary is matched against the
complete remaining binary (cf. also Example 2.1 below). A binary
segment however, must have a size evenly divisible by eight.

Default expansions All specifiers have default values and some-
times the defaults depend on the values of other specifiers. To sum-
marize the rules which apply, we show how some segments are
expanded in Table 2.

Segment Default expansion
X X:8/integer-unit:1
X/float X:64/float-unit:1
X/binary X:all/binary
X:Size/binary X:Size/binary-unit:8

Table 2. Some binary segments and their default expansions

2.2 Binary matching

The syntax for matching with a binary ifBinary is a variable
bound to a binary is as follows:

<<Segment1, Segment2, . . ., Segmentn>> = Binary

TheValuei fields of theSegmenti expressions that describe each
segment will be matched to the corresponding segment inBinary.
For example, if theValue1 field in Segment1 contains an unbound

integer The segment’s bit sequence will be interpreted as an integer. (default)
float The segment’s bit sequence will be interpreted as a float. Thesegment’s size can then only be 32 or 64.
binary The segment’s bit sequence will not be interpreted. The default unit size of a binary is 8.
unit Always followed by ‘:’ and an integer between 1 and 256 which denotes the unit size.The unit size is used to determine

the segment’seffective size which is the product of the unit size and theSize field. The unit is typically used to ensure
either byte-alignment in a binary match or that a new binary has a size that is divisible by 8 regardless of the value of
theSize field. The default unit size is 1 for integers and floats and 8 for binaries.

Table 1. Binary segment specifiers: short description

variable and the effective size of this segment is 16, this variable
will be bound to the first 16 bits ofBinary. How these bits will be
interpreted is determined by theSpecifierList of Segment1.

Example 2.1As shown below, binaries are generally displayed
as a sequence of comma-separated unsigned 8 bit integers inside
<<>>’s. The Erlang code:

Binary = <<10, 11, 12>>,
<<A:8, B/binary>> = Binary

results in the bindingA = 10, B = <<11, 12>>.
HereA matches the first 8 bits ofBinary. Because of the default

values (cf. Table 2), these eight bits are interpreted as an integer.B is
matched to the rest of the bits ofBinary. These bits are interpreted
as a binary since that type specifier has been chosen. Becauseof
that,B matches to the rest ofBinary, as this is the default size for
thebinary type specifier.

Size fields of segments are not always statically known. In fact,
it is often the case that the value of the size field is decided by the
matching of a variable in an earlier segment.

Example 2.2The Erlang code:
<<Sz:8/integer,
Vsn:Sz/integer,
Msg/binary>> = <<16,2,154,42>>

results in the binding:Sz = 16, Vsn = 666, Msg = <<42>>.

Naturally, pattern matching against a binary can occur in a
function head or in an Erlangcase statement just like any other
matching operation. The next example shows this.

Example 2.3Consider the case statement
case Binary of

<<42:8/integer, X/binary>> ->
handle bin(X);

<<Sz:8, V:Sz/integer, X/binary>> when Sz > 16 ->
handle int bin(V, X);

<< :8, X:16/integer, Y:8/integer>> ->
handle int int(X, Y)

end.

Here Binary will match the pattern in the first branch of the
case statement if its first 8 bits represented as an integer have the
value 42. In this branch of the case statement,X will be bound to a
binary consisting of the rest of the bits ofBinary. If this is not the
case, thenBinary will match the second pattern if the first 8 bits
of Binary interpreted as an integer have a value greater than 16.
Notice that this is a non-linear and guarded binary pattern.Finally,
if Binary is exactly 32 bits long,X will be bound to an integer
consisting of the second and third bytes of theBinary. If neither
of the patterns match, the whole match expression will fail.Three
examples of matchings and a failure to match using this code are
shown in Table 3.

Binary Matching ofX
<<42,14,15>> <<14,15>>

<<24,1,2,3,10,20>> <<10,20>>
<<12,1,2,20>> 258
<<0,255>> failure

Table 3. Matchings for the code in Example 2.3

3. Binaries as we want them
The binary syntax greatly simplifies the implementation of network
protocols in Erlang. However, sometimes the restrictions on the
construction of binaries, currently imposed by the underlying im-
plementation, make the use of binaries cumbersome. Let us again
consider the task of keeping only 3-bit chunks that begin with a
zero. Ideally, using the binary syntax, one would want to write
something like the code in Figure 1.

keep 0XX(<<0:1, X:2, Rest/binary>>) ->
<<0:1, X:2, keep 0XX(Rest)>>;

keep 0XX(<< :3, Rest/binary>>) ->
keep 0XX(Rest);

keep 0XX(<<>>) ->
<<>>.

Figure 1. keep 0XX using binaries without size restrictions

However, the restriction that binaries (and sub-binaries in them)
are of a size which is a multiple of eight currently make such code
impossible to write.

Instead, the simplest way that this task can currently be pro-
grammed in Erlang/OTP R10B using the binary syntax described
in the previous section (i.e., without converting to e.g. a list repre-
sentation) is shown as Program 1.

Program 1 Keep all 3-bit chunks which start with a zero
-module(keep_0XX_R10B).
-export([keep_0XX/1]).

keep_0XX(Bin) ->
keep_0XX(Bin, 0, 0, <<>>).

keep_0XX(Bin, N1, N2, Acc) ->
Pad1 = (8 - ((N1+3) rem 8)) rem 8,
Pad2 = (8 - ((N2+3) rem 8)) rem 8,
case Bin of

<<_:N1, 0:1, X:2, _:Pad1, _/binary>> ->
NewAcc = <<Acc:N2/binary-unit:1, 0:1, X:2, 0:Pad2>>,
keep_0XX(Bin, N1+3, N2+3, NewAcc);

<<_:N1, _:3, _:Pad1, _/binary>> ->
keep_0XX(Bin, N1+3, N2, Acc);

<<_:N1>> ->
Acc

end.

As we can see the program becomes quite complicated, since at
each construction point the size of binaries has to be evenlydivis-

ip options(IPPacket) ->
<<4:4, HeaderLength:4, Rest/binary>> = IPPacket,
<<Header:HeaderLength/binary-unit:32,

Data/binary>> = IPPacket,
<<4:4, HeaderLength:4, RestOfHeader:152,

Options/binary>> = Header,
Options.

(a) Using binaries as in Erlang/OTP R10B

ip options(IPPacket) ->
<<4:4, HeaderLength:4, RestOfHeader:152,

Options:(32*(HeaderLength-5))/binary,
Data/binary>> = IPPacket,

Options.

(b) Using a complex size expression

Figure 2. Functions extracting the options from an IPv4 packet

ible by eight. To ensure this, we have to keep track of the number
of bits we have consumed and the number of bits that we have
kept in order to pad the binaries to an admissible size. Having to do
this is not programmer-friendly.1 More importantly, it subtly under-
mines the use of the bit syntax for writing high-level specifications
of common tasks; programming becomes unnecessarily low-level
when there is little reason it should become so.

Another problem with the current restrictions on binaries shows
up when performing complex pattern matching. Consider extract-
ing the options from an IP packet. A function which does that,us-
ing binaries as in Erlang/OTP R10B, is shown in Figure 2(a). First
we have to find out the length of the IP header. Then the header
is extracted from the packet and finally the options are extracted
from the header. A simple solution to extracting the optionsfrom
an IP packet is to allow any expression in the size field of a binary
segment. Then theip options function could be written in the
manner shown in Figure 2(b).

A final minor inconvenience with the current implementation
of binaries in Erlang/OTP is that the type of a segment must be
specified when a binary is created. Consider this piece of code:

X = <<1,2,3>>, Bin = <<X,4,5>>.

Even though Erlang is a dynamically typed language, in the current
version of the bit syntax, the code above gives rise to a “bad
argument” exception. To get the intended effect one is forced to
write:

X = <<1,2,3>>, Bin = <<X/binary,4,5>>.

In binary construction, we lift this restriction and make the type of
each segment be the same as the type of the term that the expression
evaluates to.2

3.1 More flexible binaries: summary of changes

In short, the difference between the binaries as they are currently
implemented in Erlang/OTP R10B and the more flexible binaries
that we propose in this paper are:

1. A binary (or sub-binary) can have any bit-size, not necessarily
one which is divisible by eight.

2. TheSize field of a segment can contain an arbitrary arithmetic
expression (which evaluates to a non-negative integer).

1 The situation is quite similar to what a C programmer would have to do in order to
keep track of which bits to extract from the current byte of the incoming bit stream
and how much padding is needed in the output stream.
2 It is of course an error if an expression evaluates to a term whose type is not one of
the allowed types of binary segments.

3. Nounit specifier is needed sinceSize is an arbitrary expres-
sion. This allows the user to uniformly specify the size of seg-
ments in bits, irrespectively of the segment’s type (cf.§ 2.1).

4. No type specifier is needed in binary construction.

4. Adapting BIFs to handle flexible binaries
Several Erlang built-in functions already operate on binaries. These
built-ins must be extended to handle the new flexible binaries since
they can consist of any number of bits, not only those whose bit
size is a multiple of eight. In this section the most frequently used
built-ins which handle binaries are discussed.

4.1 binary to list(Bin)

This built-in constructs a list of values between 0 and 255 where the
first element holds the value of the first byte of the binaryBin, the
second element holds the value of its second byte,etc. The built-in
succeeds as long asBin is a binary.

It can be defined in Erlang in the following way:

binary_to_list(<<X:8,Rest/binary>>) ->
[X|binary_to_list(Rest)];

binary_to_list(<<>>) ->
[].

With this definition,binary to list(Bin) will fail if Bin has a
size in bits which is not evenly divisible by eight. This is not ap-
propriate;binary to list(Bin) should always succeed as long
asBin is a binary. Furthermore, the invariant:

Bin == list to binary(binary to list(Bin))

is important and should be preserved. This leads us to define
binary to list(Bin) as follows:

binary_to_list(<<X:8,Rest/binary>>) ->
[X|binary_to_list(Rest)];

binary_to_list(<<>>) ->
[];

binary_to_list(Bin) ->
[Bin].

That is if Bin has a bit size which is not evenly divisible by eight,
the function returns a list whose elements are the bytes ofBin and
its last element is a binary consisting of the remaining bits. Using
this definition the following call to the built-in:

binary_to_list(<<0:20>>)

returns the list[0,0,<<0:4>>].

4.2 size(Bin)

This built-in function returns the size of the binaryBin in bytes.
We need to define whatsize(Bin) should return in case the size
of the binary in bits is not evenly divisible by eight. Our choice
is to havesize(Bin) return the minimal number of bytes needed
to represent the binary. That is for a binary which consists of 20
bits like the<<0:20>> above,size(<<0:20>>) returns 3. This is
because the 20-bit binary needs three bytes to be represented.

It would however be necessary to introduce a new built-in called
bitsize(Bin) which returns the size of a binary in bits (in our
example 20).

5. Examples of binary comprehensions
Binary comprehensions are expressions that are intended toencap-
sulate recursion patterns on the binary datatype. They are analo-
gous to the widely-used list comprehensions [4], which in turn are
expressions which are syntactic sugar for the combination of map
andfilter on lists.

The main difference between a list and a binary in this case
is that what constitutes an element in a list is somethinga priori
and unambiguously defined. In contrast, because binaries are terms
without (much of a) structure, for binary comprehensions the user
must explicitly specify what is considered an element of a binary.

As a first example of the usefulness of binary comprehensions,
we show howbinnot a function which inverts a binary could be
implemented using this construct. One possible implementation is
the following:

binnot(Bin) ->
<<bnot(X):1 || X:1 <<- Bin>>.

where bnot/1 is the built-in bitwise Booleannot operator of
Erlang for integers. As can be seen, here we consider each bitas
an element in the binary. If we knew that the actual element size
of the binary is something else, for example that we have a binary
whose size is divisible by eight (i.e., a binary which is a sequence
of bytes), we could have definedbinnot in the following way:

binnot(Bin) ->
<<bnot(X):8 || X:8 <<- Bin>>.

In short, in a binary comprehension it is both possible and
mandatory to specify what should be considered an element ofthe
input binary and how the output segments of the output binaryare
to be constructed.

Thebinnot example shows how a binary comprehension can
be used to perform amap operation on binaries. The following
example introduces filtering as well. Consider thekeep 0XX task of
the introduction. It is quite clear that each 3-bit chunk is an element
in the binary. If the binary were converted to a list where each
element consisted of a 3-bit binary, we would write the following
list comprehension to keep the 3-bit binaries starting witha zero:

[<<0:1,B:2>> || <<0:1,B:2>> <- List]

Note that here the binary pattern to the right of|| works as a
filter as well as a selector; only elements in the list which match
the pattern are kept in the output list of 3-bit binaries.

In this example the elements were already defined when the list
was constructed. For a binary comprehension the elements must
be defined in the comprehension. Using binary comprehensions,
keep 0XX would simply be written as:

keep_0XX(Bin) ->
<<<<0:1,B:2>> || 0:1,B:2 <<- Bin>>.

Notice that this function works in exactly the same way as thefunc-
tion of Figure 1. Here we are forced to wrap the “output” segment
in a binary construction because the syntax for comprehensions al-
lows for only a single segment as output. Also notice that theability
to create binaries of arbitrary size — of 3 bits in this case — is a
prerequisite for flexible binary comprehensions.

It is also important to understand what would happen ifBin is a
binary whose bit size is not evenly divisible by three. In this case we
would get a matching error and the binary comprehension would
raise an exception. Why this is the case is evident since thisfunction
works in exactly the same as the function shown in Figure 1 anda
1-bit or a 2-bit binary does not match any of the clauses in that
function.

Sometimes more complicated, perhaps user-defined, filtering is
needed in which case a filter expression is written at the end of
the binary comprehension. In the following example, which shows
the power both of creating binaries whose size is possibly not a
multiple of eight and of using filters in binary comprehensions, we
only want to use elements which are in a certain range and ignore
the rest.

Example 5.1 (UU-decode)If UUencodedBin is a binary file that
has previously been UU-encoded then we can decode it with this
binary comprehension:

uudecode(UUencodedBin) ->
<<(X-32):6 || X <<- UUencodedBin, 32=<X, X=<95>>.

That is, if the value of a byte is between 32 and 95, we should
subtract 32 from that value and put it in the next six bits of the new
binary we are creating. (Recall that the default expansion for the
segmentX above isX:8/integer-unsigned; cf. also Table 2). If
the value is not in that range it is dropped. (This applies to line
breaks which are inserted into UU-encoded binaries to make sure
that it is possible to display the binary.)

6. Extended comprehensions
The binary comprehensions that we introduced in the previous
section use binaries as generators, but there is no real reason to
disallow list generators. This makes it possible to construct binaries
from lists in a more flexible way than usinglist to binary.

Consider for example a situation where we have a list consisting
of pairs where the first element contains an integer which represent
the number of bits that should be used to encode the integer con-
tained in the second element. Then we could write the following
comprehension:

<<X:S || {S,X} <- List>>

This kind of situation could occur during Huffman coding for
example. We call binary comprehensions which allow both lists and
binaries as generatorsextended binary comprehensions.

It also seems reasonable to allow binary generators in list com-
prehensions. This is very useful when trying to convert a binary
format into a structured term representation. To give a concrete ex-
ample we show in Program 2 how to collect the filenames and the
uncompressed and compressed sizes of all files in a zip-archive [3]
using a list comprehension with a binary generator.

Program 2 Extracting file information for files in a zip-archi ve
-module(zip).
-export([collect_fileinfo/1]).

-define(MAGIC, 16#04034b50).
-define(SPEC, integer-little).

collect_fileinfo(ZipBin) ->
[binary_to_list(FileName),CompSz,UnCompSz ||

?MAGIC:32/?SPEC, _:80, _Crc32:32/?SPEC,
CompSz:32/?SPEC, UncompSz:32/?SPEC,
FileNameSz:16/?SPEC, ExtraSz:16/?SPEC,
FileName:(8*FileNameSz)/binary, _:(8*ExtraSz),
_:(8*CompSz) <<- ZipBin]

We call list comprehensions which also allow binary generators
extended list comprehensions. We collectively refer to extended list
and extended binary comprehensions, as extended comprehensions.

6.1 Extended comprehensions with multiple generators

Although our extended comprehensions have filtering capabilities
and permit pattern matching in binary generators, the observant
reader has no doubt noticed that we have not catered for multiple
generators. This ability indeed exists in list comprehensions in
Erlang; for example, the following:

[{X,Y} || X <- [1,2,3], Y <- [4,5], is odd(X)]

produces the list of pairs:[{1,4},{1,5},{3,4},{3,5}].

[E || P <- EL,Q] ⇔

begin
Fun =

fun([P|Tl],F) ->
[E || Q] ++ F(Tl,F);

([|Tl],F) ->
F(Tl,F);

([], F) ->
[]

end,
Fun(EL,Fun)

end

(a) Rule 1

[E || Seg1,. . ., Segk <<- EB,Q] ⇔

begin
Fun =
fun(<< Seg1,. . ., Segk,Rest/binary>>, F) ->

[E || Q] ++ F(Rest, F);
(<<>>, F) ->

[]
end,

Fun(EB,Fun)
end

(b) Rule 2

[E || EF ,Q] ⇔

case EF of
true ->
[E || Q];
->
[]

end

(c) Rule 3

[E ||] ⇔

[E]

(d) Rule 4

Figure 3. Reduction rules for extended list comprehensions

<<S || P <- EL,Q>> ⇔

begin
Fun =

fun([P|Tl],F) ->
<<<<S || Q>>, F(Tl,F)>>;

([|Tl],F) ->
F(Tl,F);

([], F) ->
<<>>

end,
Fun(EL,Fun)

end

(a) Rule 5

<<S || S1,. . ., Sk <<- EB,Q>> ⇔

begin
Fun =
fun(<< S1,. . ., Sk,Tl/binary>>, F) ->

<<<<S || Q>>, F(Tl,F)>>;
(<<>>, F) ->

<<>>
end,

Fun(EB,Fun)
end

(b) Rule 6

<<S || EF ,Q>> ⇔

case EF of
true ->

<<S || Q>>;
->
<<>>

end

(c) Rule 7

<<S || >> ⇔

<<S>>

(d) Rule 8

Figure 4. Reduction rules for extended binary comprehensions

There is nothing wrong with multiple generators, but our ex-
perience is that they are rarely used in practice. One could possi-
bly conceive of interesting uses for multiple generators inextended
comprehensions, so, in the spirit of consistency, expressions like:

<<<<X:8,Y:8>> || X <<- <<1,2,3>>,
Y <- [4,5], is_odd(X)>>

producing the binary<<1,4,1,5,3,4,3,5>> should also be al-
lowed. Our translation in the next section caters for this.

6.2 Semantics of extended comprehensions

To formalize the semantics of extended comprehensions in Erlang
we will show how these extended comprehensions can be translated
into Erlang code. The syntax for extended list comprehensions is:
[E||Q] whereE is an expression andQ is a comma-separated list of
zero or more qualifiers. A qualifier is either a list generator, a binary
generator or a filter expression. The syntax for a list generator is
P <- EL whereP is a pattern andEL is an expression. The syntax
for a binary generator isS1,. . .,Sk <<- EB whereS1,. . .,Sk are
segments andEB is an expression. A filter expressionEF is simply
an ordinary Erlang expression. It either evaluates totrue or to
something else which meansfalse. For a program to be type
correctEL must always evaluate to a list andEB must evaluate to a
binary.

In order to simplify the handling of binary generators, which
were written using the general form:

S1,. . .,Sk <<- EB

let us define a segmentSi = Vari:Sizei/SpecifierListi if
Si = Valuei:Sizei/SpecifierListi and Valuei is a bound

variable or a constant, otherwiseSi = Si. Let us also define
FilterExpr as Vari == Valuei for all i such thatSi 6= Si.
This allows us to rewrite a binary generator as:

S1,. . ., Sk <<- EB, FilterExpr

When binary generators are rewritten in this manner the reduction
rules shown in Figure 3 can be used to translate extended list
comprehensions into Erlang code.

The syntax for extended binary comprehensions is:<<S||Q>>
where S is a segment and Q is a comma-separated list of qualifiers.
The qualifiers are the same as the qualifiers for list comprehensions.
Rewriting binary generators in the same way as described above
we can translate binary comprehensions into Erlang code using the
reduction rules shown in Figures 4.

Note that the rules in Figure 3(d) and 4(d) where there are no
qualifiers in the comprehensions are not likely to be very common
in code, but we allow them to make the description of the semantics
more uniform.

To show how these rules can be used to translate a comprehen-
sion into Erlang code consider the following comprehension:

<<(X+Y):16 || X:16 <<- Bin, Y <- List, X>Y>>

Using rule 6 we can transform that into the code shown in Figure 5.
The comprehension:

<<(X+Y):16 || Y <- List, X>Y>>

can then be reduced using rule 5. Doing this we get the code shown
in Figure 6.

Using reduction rule 7 and then rule 8 on the comprehen-
sion:<<(X+Y):16 || X>Y>> we get the code shown in Figure 7.

begin
Fun1 =
fun(<<X:16,Tl/binary>>, F1) ->

<<<<(X+Y):16 || Y <- List, X>Y>>,
F1(Tl, F1)>>;

(<<>>, _F1) ->
<<>>

end,
Fun1(Bin, Fun1)

end

Figure 5. Code produced by applying reduction rule 6 on
<<(X+Y):16 || X:16 <<- Bin, Y <- List, X>Y>>

begin
Fun2 =
fun([Y|Tl],F2) ->

<<<<(X+Y):16 || X>Y>>,
F2(Tl, F2)>>;

([_|Tl], F2) ->
F2(Tl, F2);

([], _F2) ->
<<>>

end,
Fun2(List, Fun2)

end

Figure 6. Code produced by applying reduction rule 5 on
<<(X+Y):16 || Y <- List, X>Y>>

case X>Y of
true ->
<<(X+Y):16>>;

_ ->
<<>>

end

Figure 7. Code produced by applying reduction rule 7 and 8 on
<<(X+Y):16 || X>Y>>

Putting it all together we get the final result which does not use any
comprehensions shown in Figure 8.

Fresh names need to be used for the closures when translating
comprehensions with this method. This is necessary since Erlang
lacks support for recursive closures.

It would be possible to have a different semantics for binary
comprehensions where the last couple of bits would just be skipped.
The only changes to the reduction rules that need to be made for
them to have this semantics would be to change the second clause
in reduction rules 2 and 6 from(<<>>, F) into (, F).

7. Implementation
Implementing extended comprehensions using the reductionrules
introduced in Sect. 6.2 would be very inefficient since constructing
the resulting list or binary would be quadratic in their respective
sizes.

We will present a simple translation scheme for extended bi-
nary comprehension into Erlang code which avoids the quadratic
complexity cost for constructing the resulting binary.

First we translate an extended binary comprehension:<<S||Q>>
into list to binary(<*S||Q*>). <*S||Q*> is a comprehension
used only in this compilation scheme which has the property that it

begin
Fun1 =
fun(<<X:16,Tl/binary>>, F1) ->

<<begin
Fun2 =

fun([Y|Tl],F2) ->
<<case X>Y of

true ->
<<(X+Y):16>>;

_ ->
<<>>

end,
F2(Tl, F2)>>;

([_|Tl],F2) ->
F2(Tl,F2);

([], _F2) ->
<<>>

end,
Fun2(List,Fun2)

end,
F1(Tl, F1)>>;

(<<>>, _F1) ->
<<>>

end,
Fun1(Bin,Fun1)

end.

Figure 8. Final code when all comprehensions have been reduced
in <<(X+Y):16 || X:16 <<- Bin, Y <- List, X>Y>>

begin
Fun1 =
fun(<<X:16,Tl/binary>>, F1) ->

[<*X || X < 256*>| F1(Tl,F1)];
(<<>>, _F1) ->
[]

end,
Fun1(Bin,Fun1)

end

Figure 9. Code produced by applying reduction rule 10 on the
comprehension<*X || X:16 <<- Bin, X < 256*>

always produces a possibly nested list of binaries. It can bereduced
using the reduction rules shown in Figure 12.

A small example will show what kind of code we will end up
with using this approach. Consider the comprehension:

<<X || X:16 <<- Bin, X < 256>>

This comprehension would first be translated into:

list to binary(<*X || X:16 <<- Bin, X < 256*>)

This can be reduced using reduction rule 10 into the code shown
in Figure 9. The comprehension that is left in that piece of code:
<*X || X < 256*> can be translated into the expression shown
in Figure 10 and the complete resulting code is shown in Figure 11.

8. Concluding remarks
The treatment of binaries, and bit-level data structures ingeneral,
is a neglected area in functional languages. The only notable ex-
ception that we are aware of is the bit syntax in Erlang. The exten-
sions to the binary datatype presented in this paper make binaries
flexible and the extended comprehensions we propose make pro-

<*S || P <- EL,Q*> ⇔

begin
Fun =

fun([P|Tl],F) ->
[<*S || Q*>|F(Tl,F)];

([|Tl],F) ->
F(Tl,F);

([], F) ->
[]

end,
Fun(EL,Fun)

end

(a) Rule 9

<*S || S1,. . ., Sk <<- EB,Q*> ⇔

begin
Fun =
fun(<< S1,. . ., Sk,Tl/binary>>, F) ->

[<*S || Q*>| F(Tl,F)];
(<<>>, F) ->
[]

end,
Fun(EB,Fun)

end

(b) Rule 10

<*S ||EF ,Q*> ⇔

case EF of
true ->

<*S || Q*>;
->
[]

end

(c) Rule 11

<*S || *> ⇔

[<<S>>]

(d) Rule 12

Figure 12. Reduction rules for temporary comprehensions

case X < 256 of
true ->
[<<X>>];

_ ->
[]

end

Figure 10. Code produced by applying reduction rule 11 and 12
on the comprehension<<X || X < 256>>

list_to_binary(
begin
Fun1 =

fun(<<X:16,Tl/binary>>, F1) ->
[case X < 256 of

true ->
[<<X>>];

_ ->
[]

end | F1(Tl,F1)];
(<<>>, _F1) ->
[]

end,
Fun1(Bin,Fun1)

end)

Figure 11. Code produced when reducing all comprehensions in
<<X || X:16 <<- Bin, X < 256>>.

gramming involving binaries more concise and more “functional”
in style. We have every reason to believe that, in programs ma-
nipulating bit stream data, binary comprehensions will eventually
become as common as list comprehensions are in programs which
manipulate lists.

We are currently discussing with the OTP implementation team
how the changes proposed in this paper can be incorporated into
Erlang/OTP. We believe that we will be able to add the changes
introduced here as an experimental feature in Erlang/OTP R11.

Acknowledgments
We thank Mikael Pettersson, Björn Gustavsson, Thomas Lindgren
and Tony Rogvall for comments on an earlier version of this paper
and Jay Nelson for starting an interesting discussion of binary
comprehensions on the Erlang mailing list.

References
[1] P. Gustafsson and K. Sagonas. Adaptive pattern matchingon binary

data. InProgramming Languages and Systems: 13th European
Symposium on Programming, ESOP 2004, Proceedings, pages 124–
139. Springer, Mar. 2004.

[2] P. Nyblom. The bit syntax - the released version. InProceedings of the
Sixth International Erlang/OTP User Conference, Oct. 2000. Available
athttp://www.erlang.se/euc/00/.

[3] PKWARE Inc. Appnote.txt - .zip file format specification,version
6.2.0, Apr. 2004.www.pkware.com/company/standards/appnote/.

[4] P. Wadler. List comprehensions. In S. L. Peyton Jones, editor, The
Implementation of Functional Programming Languages, chapter 7,
pages 127–138. Prentice-Hall International, 1987.

[5] C. Wikström and T. Rogvall. Protocol programming in Erlang using
binaries. InProceedings of the Fifth International Erlang/OTP User
Conference, Oct. 1999. Available athttp://www.erlang.se/euc/99/.

